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ABSTRACT

Recent explorations of the oldest
known rocks of marine sedimentary
origin from the southwestern coast of
Greenland suggest that they preserve a
biogeochemical record of early life. On
the basis of the age of these rocks, the
emergence of the biosphere appears to
overlap with a period of intense global
bombardment. This finding could also
be consistent with evidence from molec-
ular biology that places the ancestry of
primitive bacteria living in extreme
thermal environments near the last
common ancestor of all known life. To
make new advances in understanding
the physical, chemical, and biological
states of early environments for life
through this unique Greenland record,
we must fully exploit the spectrum of
biosignatures available; these efforts
must also be coupled with an under-
standing of the complex geologic his-
tory of the rocks hosting these signa-
tures. The new methods employed here
will eventually become applicable to
other worlds when samples become
available for study early in the 21st
century.

INTRODUCTION

If the presence of a stable liquid water
veneer on Earth is necessary for the origin,
evolution, and propagation of life (Fig. 1),
then the best sources of information to
understand this phenomenon are water-
laid sediments preserved in the geologic
record. Ancient (>3800 Ma) water-sculpted
terrains have been recognized on Mars,
and liquid water appears to exist beneath
the icy crust of Jupiter’s moon Europa. As
long as liquid water, energy sources, and
organic building blocks were present, life
could have emerged on these worlds as
well. The discovery of terrestrial marine
sediments approaching 4 b.y. in age (Nut-
man et al., 1996) provides a remarkable

opportunity to investigate possible envi-
ronments from which life arose. Compli-
cating this opportunity is their protracted
metamorphic history; the oldest known
sediments have been recrystallized under
high-grade metamorphism (Griffin et al.,
1980) and do not contain recognizable
microfossils (Bridgwater et al., 1981). How-
ever, stable isotope fractionations of the
bioessential elements (e.g., C, N, and S)
produced by different metabolic styles can
be preserved in ancient sediments (Schid-
lowski et al., 1983). This permits under-
standing of the development of early life
inferred from chemical and isotopic infor-
mation, rather than solely on interpreta-
tion of microfossil-like shapes (e.g.,
Schopf, 1993; McKay et al., 1996) (Fig. 2).

EARLY EARTH—SURFACE STATE

Early Earth was likely dominated by
markedly different hydrospheric (e.g.,
lower pH, much higher [Fe2+]aq) and atmo-
spheric (e.g., much lower pO2, much
higher pCO2) conditions (Holland, 1984)
and a tectonic style reflecting higher heat
flow through the crust than at present.
Several factors were unique to the early

Archean surface, including a higher ultra-
violet flux from a Sun 30% less luminous
at 3800 Ma than today (Kuhn et al., 1989)
and impact rates from asteroids and
comets many orders of magnitude greater.
Together, these conditions would presum-
ably have restricted the number of suitable
environments for life to emerge. The mini-
mum ages of some of the oldest Greenland
rocks (Nutman et al., 1996, 1997) appear
to overlap in time with a period of intense
impacts peaking at 3850 ± 100 Ma as
recorded on the Moon (Ryder, 1990).
Thermal and shock effects associated with
the Late Heavy Bombardment era (Tera et
al., 1974) are presumed to have rendered
early Earth unsuitable for the emergence
of life until after the massive bombard-
ments ceased (e.g., Maher and Stevenson,
1988). During this bombardment era,
conditions may have favored the survival
of certain bacteria that survive (and even
thrive) in environmental extremes of
temperature, pressure, and pH before
diversifying into wider ecological niches
throughout the planet. Phylogenetic
studies using highly conservative
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Figure 1. Environment of Hadean (>3800 Ma) Earth was more similar to than different from Earth of
today. Liquid water and cycling of elements between geochemical reservoirs had already been estab-
lished by 3.9 Ga. (Artwork by Don Dixon.)
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ribosomal RNA sequences reveal that the
deepest branches of life derive from “heat-
loving,” or thermophilic, bacteria (Pace,
1997). Such organisms could have sur-
vived thermal assaults from giant impacts,
especially if sequestered deep in the
oceans or in rocks away from a destructive
surface zone bathed both in the intense
ultraviolet radiation of the early Sun and a
rain of extraterrestrial debris ~4 b.y. ago.
To better understand this early era, we
have to unravel the timing of events from
a heavily modified early Archean rock
record.

EARLY ARCHEAN (>3500 Ma)
HISTORY OF WEST GREENLAND

The diverse rock types present in the
Isua district of West Greenland are all con-
tained within extensive early Archean

(3600–3900 Ma) gneisses dominantly of
tonalitic-granodioritic composition (Black
et al., 1971; Nutman et al., 1996) (Fig. 3).
This multiply metamorphosed terrane,
termed the Itsaq Gneiss Complex (Nut-
man et al., 1996), contains <10% volcano-
sedimentary enclaves in the gneisses. The
identification of water-laid rocks, such as
banded iron-formation (BIF), metamor-
phosed chert, metapelites, rare gray-
wackes, and pillow lava basalts, attests to 
a hydrosphere with an already mature
cycling of sediments by ~3900 Ma. The
paleogeography of this sedimentary sys-
tem remains poorly understood (e.g.,
oceanic arc–back-arc basin or deep abyssal
basins), but the apparent lack of continen-
tally derived sediment (Nutman et al.,
1984) mitigates against the widespread
presence of nearby exposed continental
crust at the time of deposition.
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Banded Iron-Formation 
>3850 Ma on Akilia Island

The oldest known sediment (Nutman
et al., 1997), and the oldest known rock
with evidence of biological processes
active during time of deposition (Mojzsis
et al., 1996), is a layer ~3 m thick of BIF
within a body of amphibolite on the
southern tip of Akilia island, West Green-
land (Fig. 4). This BIF on Akilia was chosen
as the type locality for the Akilia associa-
tion, a term used for volcano-sedimentary
enclaves found throughout the Itsaq
Gneiss Complex that are not part of the
larger and better preserved Isua supra-
crustal belt (McGregor and Mason, 1977).
More detailed field studies through the
1980s and 1990s, combined with
geochronological work on the intruding
gneisses in the coastal regions of southern
West Greenland, demonstrated that the
rocks around Godthåbsfjord (in the south-
western coastal area), including those of
the Akilia association, contain older com-
ponents (Kinny, 1986) than most rocks in
the Isua district, 150 km distant.

On Akilia island itself, gneissic sheets
crosscut the amphibolite enclave contain-
ing BIF and yield U-Pb zircon ages as old
as ca. 3850 Ma, interpreted as the age of
crystallization of the magmatic protolith
by Nutman et al. (1996, 1997). If this
interpretation is correct, then the BIF is at
least as old as 3850 Ma. Carbon isotopic
evidence of bio-organic activity during
deposition of the BIF sediments (Mojzsis et
al., 1996) would then suggest that the

emergence of life on this planet occurred
much earlier than previously thought
(Hayes, 1996; Holland, 1997). This age for
the Akilia island sediments is also signifi-
cant because it would place their deposi-
tion simultaneous with the Late Heavy
Bombardment of the Moon at 3800–3900
Ma, and coeval with the presence of abun-
dant liquid water on the surface of Mars.

Several of the Akilia gneisses that cut
the BIF generally contain three zircon age
populations: ca. 3850, 3650, and 2700 Ma
(Fig. 5) (Mojzsis and Harrison, 1999;
Whitehouse et al., 1999). One possible
explanation for this zircon age distribu-
tion is that the ~2700 Ma grains are meta-
morphic in origin, the ~3650 Ma grains
are igneous, and the oldest grains are
xenocrysts inherited from an older rock.
In the latter interpretation, the actual

intrusive age of the tonalitic protolith of
the gneiss would be only 3650 Ma. For
example, Kamber and Moorbath (1998)
and Whitehouse et al. (1999) argued that
the ca. 3850 Ma ages were assimilated at
about 750 °C from adjacent, zircon-bear-
ing rocks. However, there is no identified
candidate rock for the assimilant in the
whole of the Itsaq Gneiss Complex. The
granitoid protolith of the orthogneisses is
characterized by relatively low Zr contents
(~120 ppm) and high crystallization tem-
peratures (>900 °C). The likelihood of
strongly zircon undersaturated tonalitic-
granodioritic melts (Harrison and Watson,
1983) intruding into zircon-poor rocks
and preserving widespread inherited zir-
con is low (Watson, 1996). Kamber and
Moorbath (1998) argued that the lack of
3850 Ma Pb-Pb ages in feldspars from

Figure 2. Timeline of early Earth history and recent advances made
in investigating oldest biogeochemical records. Listed are ages for
oldest rock sequences, and of isotopic evidence for life in oldest
sediments.
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Figure 3. Generalized geologic map showing extent of early Archean
(3770–3900 Ma) Itsaq Gneiss Complex in southern West Greenland
(adapted from Nutman et al., 1984, 1996). Oldest sedimentary rocks
and associated gneisses are along coast, represented by island of Akilia,
and are intruded in places by Proterozoic Qorqut granites (Fig. 4).

Figure 4. Aerial 
photograph of BIF

locality on Akilia, look-
ing east; sediments are
bounded by amphibo-

lites and intruded by
gneissic sheets up to

3850 m.y. old (Fig. 5). 



gneisses collected throughout southern
West Greenland specifically preclude a
3850 Ma protolith age for any rocks in
West Greenland. However, their conclu-
sion overstates the clarity of interpreta-
tions that can be drawn from Pb isotopes
in feldspars. Peak metamorphism experi-
enced by these rocks at 3650 Ma occurred
under conditions (Griffin et al., 1980) that
could permit exchange of primitive Pb iso-
topes in feldspar (Cherniak, 1992) with
radiogenic Pb released from U-rich phases.
McGregor (2000) pointed out that the
petrologically unrelated samples analyzed
by Kamber and Moorbath (1998) are dom-
inated by relatively late phases of the
gneiss complex that underwent partial
melting under granulite facies metamor-
phism, and thus their data “do not pre-
clude the existence of very old (≥3800 Ma)
rocks” on Akilia island.

Existing evidence points to a 3850 Ma
age for granitoids intruding BIF on Akilia
island, but the great significance of this
age for early terrestrial evolution leads us
to continue our geochronological investi-
gations in more detail. We are testing
more directly the hypothesis that the 3850
Ma zircon ages are the result of xenocrys-
tic contamination by determining in situ
U-Pb ages of zircons included in preserved,
early-crystallizing phases of the tonalite
protolith. Also, the three-dimensional dis-
tribution of Pb/U revealed by isotopic
depth profiling (e.g., Grove and Harrison,
1999) and applied to the oldest zircons
helps us address whether zircon over-
growths reflect magmatic or metamorphic
processes. If these rocks indeed provide a
glimpse into pre–3800 Ma Hadean Earth,
then the time of the emergence of the bio-
sphere appears to have coincided with a
period of intense bombardment in the
inner solar system, as recorded on the
Moon.

LATE HEAVY BOMBARDMENT 
OF THE MOON AND EARTH AT 
CA. 3850 MA

The surface of the Moon displays evi-
dence of an intense bombardment that
took place at some time between original
crust formation and the outpourings of
lava that form the dark mare plains. The
oldest of the lunar mare are dated at
~3800 Ma (see review in McDougall and
Harrison, 1999). Breccias from the lunar
highlands generally yield radiometric ages
between 3800 and 3900 Ma that are inter-
preted as reflecting impact resetting (Dal-
rymple and Ryder, 1996). The narrow dis-
tribution of ages and rapid transition from
older, impact-dominated landforms to vol-
canic plains has generally been attributed
to a cataclysmic spike in impacts at
3800–3900 Ma (Tera et al., 1974; Ryder,
1990). The present evidence is consistent
with an abrupt termination of this intense

activity coinciding with nearly simultane-
ous creation of the large Imbrium, Orien-
tale (Fig. 6), and Schrödinger basins at
3850 Ma, or even as early as 3870 Ma (G.
Ryder, personal communication). These
timing details are important for at least
two reasons: An age of 3850 Ma closely
corresponds to that of the oldest sedi-
ments in West Greenland cited above, and
that age has been taken as a temporal
marker horizon for estimating the age of
heavily cratered crust on Mars and
Mercury.

Consequences of 
Bombardments to Early Life

Highly energetic impacts would have
been deleterious for near-surface emergent
ecosystems as conceptualized in the classic
“Darwin Pond” hypothesis of the origin of
life. Impact “erosion” of planetary atmo-
spheres and wholesale destruction of
hydrosphere and crust from the most
massive infalling bodies are some of the
effects postulated to have rendered the
surface zone truly Hadean in character
before 3800 Ma (Sleep et al., 1989). How-
ever, if life originated in deep marine or
crustal nurseries (Shock et al., 1995) and
continued to reside there until bombard-
ment ceased, events at the surface might
have had little immediate consequence to
survivability of the biosphere.

To search for evidence of impacts in
the geologic record, workers have taken

advantage of the geochemistry of iridium.
Earth’s crust is highly depleted in Ir and
other platinum-group metals relative to its
mantle, which is itself depleted relative to
chondritic meteorites by partitioning of Ir
into the core. Iridium content of sedi-
ments is therefore used as a sensitive indi-
cator of the presence of extraterrestrial
debris (e.g., Alvarez et al., 1980). Sources
of Ir in ancient sediments might represent
interplanetary dust particles, micromete-
orites, local- to world-spanning impacts,
airbursts, and products of asteroid or
comet showers. If depositional rates can be
estimated, measurements of Ir in sedi-
ments can provide information on the
accretion of extraterrestrial material dur-
ing the time of deposition. On the basis of
timing of the lunar bombardment and age
of the oldest terrestrial sediments, the
Akilia rocks might therefore be expected
to preserve a signal of markedly higher
flux according to their precise age correla-
tion with the lunar bombardment record.

However, unless sedimentation rates
were anomalously rapid (»1 mm/yr),
thereby diluting a signal of intense
impacts, the Ir contents for all West
Greenland samples studied thus far are
lower than that expected from simple
models for the Late Heavy Bombardment
(Anbar et al., 1999). This observation may
be explained by the fact that the bombard-
ment was not an era of continuous mas-
sive impacts. It was most likely dominated
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Figure 5. 207Pb/206Pb ion microprobe ages of zircons from tonalitic gneiss intruding amphibolite +
banded iron-formation on Akilia island, West Greenland. What we interpret as the magmatic zircon
population in these rocks (top right) has highest Th/U values and tightest spectrum of ages at 3850 ±
10 Ma (data in green from Nutman et al., 1997; data in red from Mojzsis and Harrison, 1999). All other
ages are for lower Th/U metamorphic zircons (arrow) that correlate with well-known metamorphic
events in West Greenland at 3650 Ma and 2700 Ma (Baadsgaard et al., 1976; Griffin et al., 1980).
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by quiet conditions punctuated by rela-
tively infrequent episodes of extreme ther-
mal shocks, none of which could have
erased a deep-seated biosphere already in
place. Furthermore, evidence for life from
carbon isotopic distributions in rocks from
the early Archean of Greenland would
appear to indicate that life withstood the
Late Heavy Bombardment, whatever its
intensity, relatively unscathed.

CHEMICAL AND ISOTOPIC 
FOSSILS OF EARLY LIFE

On a global scale, kinetic isotope frac-
tionations during enzymatic activity pro-
duce distinctive variations in stable iso-
tope ratios of bioessential elements (e.g.,
carbon, nitrogen, and sulfur) in various
reservoirs. A record of these fractionations
can be obtained by measuring the isotopic
ratios of these elements in bio-organic
materials preserved in sediments. It has
long been recognized (e.g., Thode et al.,
1949; Wickman, 1952; Craig, 1953) that
life systematically and significantly affects
the isotopic composition of the biologi-
cally important elements and that these
distinctive biosignatures can be preserved
during diagenesis and moderate-grade
metamorphism. After more than 50 years
of investigations, geochemists now agree
that postdepositional processes tend to
obscure the original carbon isotopic signal
of bio-organic material, but only toward
values characteristic of inorganic carbon
(Schidlowski, 1988; Kitchen and Valley,
1995; Des Marais, 1997). If this isotope
record can survive very high grade meta-
morphism, then it becomes possible to
analyze the oldest sediments for evidence
of life (e.g., Mojzsis et al., 1996).

Carbon Isotopes
The primary metabolism of organisms

on Earth that manufacture their own food
(autotrophs) imposes a kinetic isotope

fractionation that discriminates against
13C in the fixation of atmospheric CO2
(δ13CPDB = –7.9‰) and dissolved marine
HCO-

3(δ13C = 0 ± 1‰). Because of the
intrinsic lower reactivity of 13C vs. 12C,
enzymatic processes discriminate against
CO2 during carbon fixation (by the
enzyme ribulose bisphosphate carboxylase
in cyanobacteria and plants; Park and
Epstein, 1960). These mechanisms induce
up to 5% differences in isotopic composi-
tion of bio-organic carbon with respect to
inorganic carbon sources in the atmo-
sphere and hydrosphere. The average iso-
topic composition of Phanerozoic bio-
organic matter (δ13C = –27‰) is far away
from the inorganic field. While Horita and
Berndt (1999) postulated that the inor-
ganic production of CH4 from serpen-
tinization could create a carbon isotope
fractionation of similar magnitude, subse-
quent work suggests that the evolved
methane in these experiments derives
exclusively from bio-organic contami-
nants in the reactant olivine (McCollom
and Seewald, 1999). No known abiotic
process mimics the large carbon isotopic
signal of life in sediments.

Microbial methanogenesis is a
widespread phenomenon whereby organic
matter decomposes in anaerobic sedi-
ments and in the intestinal tracts of rumi-
nants. The acetyl-CoA pathway—a meta-
bolic system utilized by methanogens—is
responsible for carbon isotope fractiona-
tions up to –40‰ from inorganic carbon
(Preuß et al., 1989). Methanogens are a
group of chemosynthetic (rather than
photosynthetic) microbes that are among
the most primitive life forms (Woese,
1987). Chemoautotrophes can produce
biomass with δ13C values as low as –60‰
(Summons et al., 1998). The recycling of
carbon by these primitive microbes, and
the isotopically light (δ13C = –30‰ to
–60‰) composition of their organic
remains are considered diagnostic of con-
temporary microbial habitats character-
ized by extreme environments. These
habitats (e.g., high salinity, high water
temperature, or variable pH) are consid-
ered analogous to some of the earliest
environments for life on Earth.

Analyses of bulk carbonaceous matter
trapped within early Archean, Proterozoic,
and younger sediments has demonstrated
the ubiquity of isotopically light carbon
(Schidlowski et al., 1979, 1983; Hayes et
al., 1983; Des Marais, 1997; Rosing, 1999).
These results are consistent with a bio-
organic origin for sedimentary reduced
carbon; yet, generalized concerns regard-
ing later contamination or open-system
behavior during metamorphism have been
raised. While specific criticisms of this
kind (e.g., Sano et al., 1999) can be shown
to be unwarranted on geologic grounds
alone (e.g., Mojzsis et al., 1999a), newly
developed isotopic measurements permit
textural and mineralogical preservation of

the analyzed material and potentially
transcend these two issues. Mojzsis et al.
(1996) used a high-resolution ion micro-
probe to analyze extremely small (~10 µm)
carbonaceous inclusions locked within
mineralogic domains that had remained
stable since diagenesis (Mojzsis et al.,
1999a). Carbon isotopic values for car-
bonaceous inclusions in apatite from the
≥3770 Ma Isua sediments (δ13C = –30‰)
and the ≥3850 Ma BIF from Akilia island
(δ13C = –37‰) closely match those for
similar rocks from a variety of younger,
less metamorphosed rocks.

The simplest interpretation of the car-
bon isotopic data in Mojzsis et al. (1996) is
that the organisms responsible for the
light carbon signature in the oldest known
terrestrial sediments were metabolically
complex, perhaps comprising populations
of phosphate-utilizing photoautotrophs
and chemoautotrophs. These data may
point to the presence of diverse photosyn-
thesizing, methanogenic, and methy-
lotrophic bacteria on Earth before 3850
Ma (Mojzsis and Arrhenius, 1998; Mojzsis
et al., 1999b). Not only had life taken firm
hold on Earth by the close of the Hadean
era, but it also appears to have evolved far
enough away from its origin to create an
interpretable signature in carbon isotopes.

Our group at the University of Cali-
fornia, Los Angeles, has undertaken study
of the stable isotope composition of indi-
vidual microfossils by the techniques
described above; these studies indicate the
opening of new vistas in the isotopic pale-
ontology of ancient life forms where rec-
ognizable fossil microbes are preserved.
Furthermore, the utility of sulfur isotope
(32S,33S, 34S) measurements of individual
sulfide minerals in ancient rocks (Green-
wood et al., 1999) potentially provides
information not only about primitive
metabolic cycling of sulfur in the bio-
sphere, but also of unique atmospheric
fractionations and atmosphere-crust inter-
actions early in Earth history.
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Figure 6. Telescopic mosaic of the front side of
Moon shows dark mare basalt plains and much
more rugged and heavily cratered highlands of
higher albedo and more feldspathic composition.
Highlands show ancient impact basins as well as
craters.
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