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Extracting Bulk Rock Properties from Microscale 
 Measurements: Subsampling and Analytical Guidelines

ABSTRACT

Geologists are commonly faced with 
questions relating to representative sam-
pling at all scales: outcrop to formation, 
hand sample to bulk rock, microanalysis 
to overall chemistry. A new computer 
model allows quantitative answers to the 
question of how many different micro-
analysis spots are needed to determine 
different bulk properties of a rock for any 
type and scale of measurement, including 
whole rock composition and oxidation 
state. The relationships among grain size, 
glass ordering, and microbeam size, the 
composition and heterogeneity of the rocks 
studied, and the location of the analyses 
relative to textural features are all impor-
tant. These variables can be grouped into 
those that affect the heterogeneity (H) of 
the material versus the scale of measure-
ments (M) being used. For rocks where H 
(grain size, glass long- or short-range 
ordering, or composition) <<M (beam 
size), an average of fewer than ten analy-
ses will yield a representative bulk rock 
composition no matter how heterogeneous 
the phase assemblage. For rocks where  
H ≥ M, hundreds of analyses may be 
needed to result in acceptable analytical 
precision. Guidelines for how many sam-
ples/analyses are needed to represent geo-
logic materials at any scale are presented.

INTRODUCTION

For more than a century, geologists have 
used bulk analyses (e.g., Bowen, 1928; 
Daly, 1933; Yoder and Tilley, 1962; BVSP, 
1981) to develop frameworks and classifi-
cations for understanding rock paragenesis 
and properties. This practice has its origins 
in the tradition of wet chemistry, which 
required grams of material for analyses. 
Despite the now-widespread availability of 
modern microanalytical techniques, use of 
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terminology based on bulk rock character-
istics persists even in the twenty-first  
century. Thus an ironic modern conundrum 
is this: how many microanalyses of a  
rock are needed to accurately represent  
its bulk composition?

The problematic issue is that of scale, 
i.e., the ratio of sampling size to that of the 
feature being measured. Field geologists 
encounter this problem when they set out 
to sample an outcrop: how many hand 
samples will represent the bulk character-
istics of the outcrop, or even the entire 
formation? For geochemists, the scale of 
interest is that of mineral grain size rela-
tive to analytical beam size. As microbeam 
techniques continue to sample smaller vol-
umes, the scale may be that of individual 
atoms. Increasing resolution only exacer-
bates the understanding of bulk geological 
properties.

Why are bulk rock analyses important? 
Because magma composition is rarely, if 
ever, measured in its liquid state, data from 
the resulting solidified materials must be 
used to back-calculate original compositions 
and conditions. In an era when microanal-
ysis is routine, bulk rock composition is 
still an important parameter because it 
permits correlations with other rocks and 
geologically related regions (e.g., Philpotts 
and Ague, 2009). On an even broader 
scale, knowledge of magma source region 
conditions and compositions helps define 
the state of the mantle, provides insight 
into the geochemistry of crystallization 
and ascent, and characterizes processes 
affecting composition and redox, such as 
assimilation or injection of a new melt 
(e.g., Cox et al., 1979; BVSP, 1981; 
Asimow, 2000). Bulk rock compositions 
and properties may also be important in 
sedimentary and metamorphic rock studies 
to provide information on protoliths and 

formation conditions, as well as pseudo-
section analysis (e.g., Nutman et al., 1997; 
Powell et al., 1998; Bucher and Frey, 2002).

Despite the importance of bulk rock 
data, they are surprisingly complicated to 
measure. For glassy or fine-grained rocks 
(e.g., pumice or shale), direct microanaly-
ses and bulk techniques easily yield com-
parable results. Complications arise when 
a rock contains xenocrysts or rock frag-
ments that are not in equilibrium, or when 
mineral chemical zonation is present. It 
should be obvious why bulk composition 
calculations are rarely attempted on 
coarse-grained samples. For porphyritic or 
most metamorphosed rocks, determining a 
bulk composition is possible but tedious. 
Igneous rocks can be crushed and hand-
picked to separate the glass for melt com-
position analysis, or mass balance calcula-
tions can be run using glass and crystalline 
compositions from electron probe micro-
analysis (EPMA). Alternatively, material 
can be ground and fused experimentally 
prior to bulk or microanalysis. These are 
time-consuming tasks, and the accuracy of 
these estimation methods is difficult to 
quantify. In addition, the total sample vol-
ume may be prohibitively small to apply 
these methods to, as is often the case for 
extraterrestrial materials, thereby requir-
ing a microanalytical technique.

Moreover, “bulk analysis” means differ-
ent things for varying scales of geologic 
processes and analytical instruments; a 
“bulk” analysis for one application may 
not be useful for another (e.g., Potts et al., 
1995; Martin, 2003). EPMA routinely mea-
sures sample sizes of 1 × 1 mm; handheld 
Raman or laser-induced breakdown spec-
troscopy (LIBS) beam sizes can be nano-
meters up to centimeters; an atom probe 
may have sub-nanometer spatial resolution 
(Fig. 1). When beam size shrinks to the 
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scale of single atoms, as is the case with 
scanning transmission electron micros-
copy–electron energy loss spectroscopy 
(STEM-EELS; e.g., Garvie and Buseck, 
1998; van Aken and Liebscher, 2002) and 
the atom probe (e.g., Kelly and Larson, 
2012; Valley et al., 2015), additional con-
siderations arise. Do the compositions of 
single atoms or even tens of atoms record 
anything about properties of the whole 
sample? Any misunderstanding of how to 
reconcile sample size and measurement 
technique size runs the risk of leading to 
difficulties in interpretation.

This paper thus explores sampling strat-
egies that result in the most accurate 
returned bulk rock properties from vary-
ing scales of measurements, rock types, 
textures, and analytical instruments. Rock 
characteristics (mineral and melt constitu-
ents, grain size) and analytical conditions 
(beam size, analysis location, number of 
analyses) are varied to study errors propa-
gated onto bulk rock compositions. The 
results define the number of analyses 
required to get reproducible bulk rock 
compositions in lab and field applications. 
These are broadly relevant to any type of 
microanalysis, and also to sampling at field 
scales, where the ratio of hand sampling 
size to outcrop/formation scale heterogene-
ities is relevant.

METHODOLOGY

Grain size, beam size, phase assemblage, 
and phase composition are varied using a 
computer model to determine potential 
effects on the accuracy of bulk rock mea-
surements. The modeling program returns 
mineral and oxide percentages along with 

standard deviations of the bulk composition 
represented by the average of the chosen 
analyses, which are randomly located.  
The model is built around a 2-D 1000 × 
1000 pixel image. Applications to Mars 
exploration along with user input param-
eters are given in McCanta et al. (2013), 
and the model itself is available at  
www.mtholyoke.edu/~pdobosh/libssim/ 
lasersimR5.html.

RESULTS

Accuracies of bulk compositions for 
multiple rock types, melt compositions, 
and beam conditions were calculated as a 
function of grain size, beam size, and sam-
pling density. Grain size here refers to 
either mineral size in a crystalline rock or 
ionic radius of an atom within either a 
crystallographic matrix (mineral) or a ran-
domly distributed amorphous matrix (melt).

Crystalline Rocks

To evaluate size ratio effects in crystal-
line rocks, basalt and dacite compositions 
from Mt. Shasta, California, USA, were 
used as program inputs. These natural 
island arc samples are fully crystallized, 
making it difficult to obtain a bulk com-
position as discussed above. Experimental 
work (Baker et al., 1994; McCanta et al., 
2007) reproduced the melt-crystal assem-
blages, allowing bulk rock composition to 
be estimated and compared with model 
results. Variable grain sizes (Figs. 2A–2C), 
beam sizes, and sampling densities were 
studied (see GSA Data Repository 1 Table 
S1). For each sampling density (10, 50, or 
100 locations), three data sets are shown: 
grain size << beam size (ratio = 0.25), 

grain size = beam size (ratio = 1.0), and 
grain size >> beam size (ratio = 2.5). 
Precision values, represented by relative 
standard deviation (RSD), are given in 
Table 1.

Single Phase Systems

If only a single phase is present, then a 
reliable bulk composition requires few 
analyses, given the reasonable expectation 
that analytical precision is as good or bet-
ter than accuracy. In our model results, six 
spot analyses are generally enough to gen-
erate a statistically significant bulk compo-
sition and account for minor heterogene-
ities; this number varies slightly with the 
relative precision and accuracy of each 
analytical method. These results apply to 
chemical measurements in glasses or 
homogeneous single crystals with sizes 
larger than the beam.

Grain Size

The presence of multiple phases intro-
duces complications to sampling protocols 
and forces consideration of the grain-size 
to beam-size ratio. When grain size is 
small relative to the beam (ratio = 0.25; 
Fig. 2A), a single analysis likely samples a 
nearly representative portion of the assem-
blage, and may include all phases in the 
rock in their true proportions. Therefore, 
archetypal bulk compositions are returned 
when the sample grain size << beam size 
(Supplementary Table [see footnote 1]). As 
grain and beam size converge (grain size = 
beam size), calculated bulk compositions 
decrease in precision (Table 1). When 
grain size >> beam size (ratio = 2.5), it 
becomes unlikely that any microanalysis 

Figure 1. Comparison of geoanalytical scale. (A) Halemaumau crater, Kilauea, Hawaii. Photo by Molly McCanta. (B) Lava flow features, Kilauea. Photo 
by Nathan Bridges. (C) Photomicrograph of basaltic magma from Kilauea Iki lava lake. Photo by Molly McCanta. (D) Scanning transmission electron 
microscopy–electron energy loss spectroscopy (STEM-EELS) large grayscale high-angle dark field image of basaltic glass. Brighter areas show where 
iron is concentrated; bottom left corner shows the sample edge. LIBS—laser-induced breakdown spectroscopy; XAS—X-ray absorption spectroscopy.



will sample all phases in a rock in correct 
proportions. In such cases, returned wt% 
oxide values do not accurately represent 
the bulk rock (Supplementary Table; Figs. 
2D–2F), and the RSDs associated with 
such analyses are so large as to render 
them meaningless (Table 1).

Phase Assemblage

Although grain size is a significant 
determining factor in producing accurate 
bulk compositions, the chemistry of con-
stituent minerals and glasses in the phase 
assemblage may also play roles. If a single 
phase contains the majority of an element 

in a system, it will have a disproportionate 
effect on bulk composition if the size of 
that mineral is close to the beam size. In 
the Shasta basalt experiments, olivine is 
the major MgO host and therefore controls 
the bulk MgO content. As grain size 
increases relative to beam size, errors asso-
ciated with predicted MgO content get 
larger at a much faster rate than those of 
the other oxides (Fig. 3) due to dispropor-
tionate undersampling of the coarse-grained 
olivine. Other oxides in this basalt (CaO, 
Al2O3, SiO2) do not show similar behavior 
(Fig. 3). They occur in comparable amounts 
among all mineral phases (plagioclase, 
augite, glass), so representative sampling 
of them is not as critical to returning the 
true bulk rock composition.

Number and Placement of Analysis Spots

From a statistical viewpoint, minerals in 
rocks can be viewed as randomly distrib-
uted unless there is textural evidence to the 
contrary (Figs. 2A–2C). As the number of 
analyses increases, calculated bulk compo-
sition gets closer to the true bulk value 
(Figs. 4A–4C; Supplementary Table). 
Analytical precision increases with sam-
pling density as well, especially for minor 
elements or those concentrated in a single 
phase (i.e., MgO as noted above) (Table 1). 
In our modeled rocks, ~6–10 analyses are 
necessary for calculated bulk composition 
to fall within a 1s error envelope of the 
real composition for most fine-grained 
samples (grain size < beam size) (Figs. 4A– 
4C). This is definitely not the case for 
coarse-grained samples (beam size > grain 
size; Fig. 4D), where sampling of even 100 
locations does not reproduce calculated 
bulk compositions within the 1s error 
envelope (Table 1).

Melt Properties

Geologists are increasingly investigating 
chemical phenomena that occur at smaller 
scales than the routine 1 mm EPMA mea-
surement, such as measurement of iron 
redox state by X-ray absorption spectros-
copy (XAS: spot size = 1000–5000 nm) 
and STEM-EELS (spot size = 0.1–0.2 nm). 
To illustrate the resulting issues of scale, 
we calculated Fe3+/Fe2+ ratios for a basaltic 
melt (BAS-2; Dyar et al., 2016) homog-
enized under oxidizing conditions. To sim-
ulate STEM-EELS measurements, a beam/
sample order size ratio of 0.1 was used (beam  
size = 10 pixels; order size = 100 pixels; 

Figure 2. (A–C): Modeled basaltic “rocks” of varying grain size: red—glass, blue—olivine, purple—
plagioclase, and pink—augite. Black squares are the sampling areas (50). Grain size relative to 
beam size increases to the right; beam size remains constant at 40 pixels. (A) Grain size = 10 pixels. 
(B) Grain size = 50 pixels. (C) Grain size = 150 pixels. (D–F): Comparison of true versus calculated 
bulk composition as grain size increases relative to beam size, with grain size < beam size (0.25), 
grain size ≈ beam size (1.25), and grain size > beam size (2.5). The solid line denotes where grain size 
and beam size are of equal size. Dashed lines represent the true electron probe microanalysis–
determined bulk composition. Circles are the calculated values. (D) MgO. (E) Al2O3. (F) CaO.

Table 1. Precision of bulk composition data 
Basalt 

Sampling density = 10  Sampling density = 50  Sampling density = 100 
0.25 1.0 2.5  0.25 1.0 2.5  0.25 1.0 2.5 

SiO2 0.01* 0.02 0.03  0.00 0.01 0.02  0.00 0.01 0.02 
Al2O3 0.05 0.05 0.20  0.02 0.07 0.11  0.01 0.05 0.05 
TiO2 0.06 0.11 0.19  0.01 0.07 0.15  0.03 0.07 0.15 
FeO 0.06 0.09 0.19  0.01 0.06 0.10  0.01 0.04 0.07 
MgO 0.10 0.22 0.42  0.03 0.13 0.26  0.03 0.12 0.13 
MnO 0.07 0.07 0.20  0.00 0.07 0.06  0.00 0.07 0.07 
CaO 0.04 0.12 0.12  0.01 0.05 0.09  0.01 0.03 0.06 
Na2O 0.04 0.07 0.16  0.01 0.06 0.12  0.01 0.05 0.05 
K2O 0.04 0.11 0.20  0.02 0.08 0.15  0.02 0.06 0.14 

Dacite 
Sampling density = 10  Sampling density = 50  Sampling density = 100 
0.25 1.0 2.5  0.25 1.0 2.5  0.25 1.0 2.5 

SiO2 0.01 0.03 0.05  0.01 0.02 0.03  0.00 0.01 0.02 
Al2O3 0.02 0.07 0.08  0.01 0.05 0.04  0.01 0.03 0.05 
TiO2 0.06 0.24 0.25  0.03 0.12 0.23  0.03 0.06 0.15 
FeO 0.06 0.18 0.18  0.02 0.08 0.16  0.02 0.05 0.12 
MgO 0.13 0.38 0.47  0.06 0.15 0.39  0.05 0.13 0.25 
MnO 0.00 1.00 1.00  0.00 0.00 1.00  0.00 0.00 1.00 
CaO 0.07 0.15 0.22  0.03 0.08 0.11  0.02 0.07 0.12 
Na2O 0.03 0.05 0.09  0.01 0.03 0.05  0.01 0.02 0.04 
K2O 0.05 0.11 0.20  0.02 0.06 0.08  0.01 0.05 0.09 
   *Relative standard deviation (standard deviation/measured value). 

 



Fig. 5A). Here “order” reflects the extent of 
short- or long-range ordering in the glass/
melt, which is unknown. For XAS mea-
surements a beam/order size ratio of 950 
was used (beam size = 950 pixels; ordering 
size = 1 pixel; Fig. 5B) because our model 
has maximum beam size of 1000 that results 
in full sample coverage.

Beam Dimensions

Even when grain size is small, as in 
either crystallographic dimensions of a 
mineral or short range order in melts, vari-
ations in analytical spot size also result in 
sampling challenges. For example, the 
redox state of a melt (glass) can be calcu-
lated from its Fe3+/SFe ratio (e.g., Kilinc et 
al., 1983; Kress and Carmichael, 1991). 
Measured Fe3+ concentration must be rep-
resentative of the bulk system to be inter-
pretable. Our model simulates truly ran-
dom melts (Figs. 5A and 5B), but natural 
silicate glasses may exhibit short range 
ordering on ~1–2 nm scales (e.g., Mysen 
and Richet, 2005). If beam size is much 
smaller than the short range ordering in the 
melt (e.g., STEM-EELS), a single analysis 
may sample only one atom (Fig. 5A), gen-
erating no representative information on the 
redox state of the bulk system (Table 2). 
Multiple analyses with this 0.1 beam/order 
ratio may never actually sample all of the 
elements present (Fig. 5A). Even with an 
impractically large number of analyses per 
single sample (n = 50), true bulk glass 
redox ratio is elusive (Table 2). Oxidation 
state of the sample cannot be quantified 
accurately without excessively large num-
bers of analyses.

When analytical beam size is several 
orders of magnitude greater than the short 
range order in the melt (e.g., XAS), a single 

analysis will sample a large, nearly repre-
sentative number of atoms (Fig. 5B), and 
the calculated redox value approaches that 
of the true value (Table 2). Multiple analy-
ses are still required to adequately cover 
the sample area and reduce standard devia-
tions, but they do not significantly improve 
the match to the actual data (Table 2). The 
apparent decrease in the precision of the 
Fe2O3/FeO ratio with more analyses 
observed in Table 2 is an artifact of the 
model dimensions; when a single analysis 

covers nearly the whole sampling area, 
multiple analyses lead to increased analyti-
cal overlap, resulting in oversampling of 
the minor elements. This would not occur 
in a natural sample of near “infinite” 
dimension.

DISCUSSION

Using spot analyses to return representa-
tive data on a bulk sample thus requires 
consideration of several issues: the miner-
alogy or scale of ordering in a glass, 

Figure 3. Comparison of influence of phase 
assemblage on the precision of the bulk analy-
sis. Precision = percentage of the oxide value 
represented by the relative standard deviation 
(RSD*100). Elements that occur dominantly in 
one phase are more affected as grain size 
increases relative to beam size because they 
are more likely to be undersampled.

Figure 4. Comparison of sampling number with modeled bulk compositions. Solid line represents 
grain size << beam size; dotted line represents grain size >> beam size; dashed line is the true elec-
tron probe microanalysis oxide value. Modeled and true bulk values are approached within ~10 
analyses for fine-grained samples (solid line) with larger beam spot sizes. Significantly more analy-
ses are needed when the sample is coarse-grained (dotted line). (A) Al2O3. (B) FeO. (C) MgO. (D) Gore 
Mountain garnet outcrop. Circles represent the 1.5 cm diameter of possible Raman or laser-induced 
breakdown spectroscopy analytical dimensions. Note the difficulty in sampling a representative 
bulk composition even at these relatively large analytical sizes in a coarse-grained material.  
For comparison, with a 2 µm diameter beam size, 7,500 electron probe microanalysis or X-ray 
absorption spectroscopy spots would fit the diameter of each individual circle; for a 0.2 nm diame-
ter beam size, 75,000,000 electron energy loss spectroscopy spots would fit the diameter of each 
individual circle.

Figure 5. Modeled basaltic “melts.” Black squares are the sampling 
areas (20). (A) Electron energy loss spectroscopy measurements: 
beam/order size ratio = 0.1 (beam size = 10 pixels; order size = 100 
pixels). (B) X-ray absorption spectroscopy measurements: beam/
order size ratio = 950 (beam size = 950 pixels; order size = 1 pixel).



texture (phase heterogeneity) of the target 
rock, distribution of textural features 
within each target, sampling size of the 
analytical instrument used, and sampling 
strategy employed (Fig. 6).

Target Rock Type

It is intuitive to understand how a beam 
that samples the maximum number of 
grains in proportions representative of the 
entire rock will yield optimal results. In 
coarser-grained rocks with varying abun-
dances of minerals in their modes, sam-
pling strategy becomes critical; it is very 
important that the phase assemblage be 
sampled proportionately. This may require 
plotting out sampling grids prior to analy-
sis or point-counting phases on an outcrop 
to determine the major phenocryst concen-
tration. In truly coarse-grained rocks (i.e., 
Fig. 4D), obtaining bulk compositions 
from smaller scale analyses is simply not 
feasible. However, in such samples indi-
vidual mineral compositions may be repre-
sentatively sampled, although fine-scale 
zonation might be obscured.

Sampling strategy is also critically 
important when the analytical instrument 
has a sampling size much smaller than the 
crystallinity or long-range ordering of the 
phase. As modern instrument resolution 
continues to increase, understanding of 
sampling strategy will become even more 
critically important.

It is less obvious that relative chemis-
tries of the individual phases being studied 
are important; if even one phase has dra-
matically different elemental abundances 
over the other(s), then a larger number of 
analyses will be needed to represent the 
bulk. On the other hand, an ultramafic 
rock composed solely of olivine and pyrox-
enes might have much less elemental vari-
ability among phases, and thus require 
fewer analyses to be representative.

Distribution of Analysis Spots

Our model assigns sample locations ran-
domly to prevent systematic sampling bias. 

In the field or in most microanalyses, ana-
lytical spots are chosen by the operator. 
Therefore, the distribution of sampling 
points must be strategically selected to 
minimize both the number needed and the 
sampling bias (Fig. 6). This can be 
accomplished in one of two ways: analyze 
a large number of truly randomly selected 
points, or estimate the mineral mode and 
apportion analysis locations to represent 
each one appropriately (i.e., Chayes, 
1956). The former is generally far easier 
than the latter, with the modal analysis 
method presenting the additional potential 
issue of assuming a 2D surface mode 
characterization represents a 3D rock 
sample. New software for quantitative 
EPMA mapping, which can provide full 
compositional quantification of each 
image pixel (e.g., Carpenter et al., 2013; 
Carpenter, 2016), may reduce sampling 
bias and better account for geochemical 
heterogeneity.

For rocks with distinct foliation, linea-
tion, grain preferred orientation, or layer-
ing, sampling strategy becomes even 
more important; in these samples, an 
accurate bulk rock composition may not 
be meaningful. For example, if a rock is 
layered, sampling traverses should cross-
cut bedding planes with a sampling inter-
val smaller than the layering interval to 
ensure proportional representation of 
each layer. Alternatively, traverses that 
probe a single layer laterally may be 
extremely useful, especially if multiple 
layers are similarly studied for contrast.

Number of Analyses Needed

Several sampling strategies can ensure 
quality analyses with reproducible results 
(Fig. 6). First, the larger the ratio between 
grain and beam size, the more analyses 
are required. For grain sizes << beam 
size, 6–10 analyses produce a statistically 
meaningful result as long as the phases 
present are sampled proportionally  
(Figs. 4A–4C) and measurement accuracy 
is appropriate. When the scale of grain 
size or the extent of ordering is close to  
or exceeds beam size (Fig. 4D), signifi-
cantly more analyses are needed (up to 
1000) to generate reproducible bulk com-
positional data. When more than one 
phase is present, analysis locations must 
be designed to represent all phases in the 
rock proportionately if a true bulk rock 
analysis is desired.

Figure 6. Comparison of the number of analyses 
required for reproducible bulk compositional 
data as a function of the scale of sample to 
measurement heterogeneity (upper). The same 
plot is used to indicate where various analytical 
techniques and common geological samples 
might intersect (lower). STEM-EELS—scanning 
transmission electron microscopy–electron 
energy loss spectroscopy; XAS—X-ray absorp-
tion spectroscopy; LIBS—laser-induced break-
down spectroscopy; EPMA—electron probe 
microanalysis.

Table 2. Accuracy of melt redox compositions. 
  BAS-2   n = 1 n = 10 n = 50 n = 1 n = 10 n = 50 
Beam/order 
size ratio* n/a  0.1 0.1 0.1 950 950 950 

SiO2 49.73 (0.35) 100.00 20.00 45.00 50.88 49.95 49.96 
Al2O3 15.51 (0.19) 0.00 28.00 13.00 14.56 16.00 16.00 
TiO2 1.55 (0.03) 0.00 0.00 0.00 1.92 2.03 2.03 
FeO 8.51 (0.43) 0.00 10.00 15.60 8.00 9.00 8.97 
Fe2O3 1.29 (0.03) 0.00 0.00 0.00 1.44 2.02 2.00 
MgO 7.10 (0.08) 0.00 32.00 15.00 9.60 8.00 8.02 
CaO 11.48 (0.07) 0.00 10.00 6.00 10.40 10.01 10.00 
Na2O 2.66 (0.07) 0.00 0.00 5.40 3.20 2.99 3.02 
Total 97.83  100.00 100.00 100.00 100.00 100.00 100.00 
Fe2O3/FeO 0.152   0.000 0.000 0.180 0.224 0.223
   *Here order means the scale of the composition variation, which for a glass would be the scale 
of long- or short-range ordering. 

 



CONCLUSIONS

Our models show quantitatively what is 
intuitively obvious: heterogeneous rocks 
with coarse grain sizes present great chal-
lenges when obtaining bulk analyses. Care 
must be taken both when choosing ran-
domly distributed analytical points and 
when interpreting data from instruments 
with different sampling volumes (Fig. 6). 
Moreover, rocks with visible texture (lay-
ering, phenocrysts, etc.) must be carefully 
sampled (if bulk compositions are needed) 
to ensure that analysis locations are pro-
portionally representative of all textures 
present (Fig. 6). Additionally, the ratio of 
sample size to analytical size needs to be 
considered, especially as modern instru-
ments resolve increasingly small analytical 
volumes. The concept of a “bulk analysis” 
likely needs to be revised for each system, 
following the methods provided in this 
study (Fig. 6).
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