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Canada’s craton: A bottoms-up view
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ABSTRACT
The origin of mantle lithosphere underlying Archean crustal 

provinces is most consistent with depletion at low pressures in 
the spinel facies under degrees of melting higher than observed 
in modern ocean basins. Depleted sections of the lithosphere 
created in convergent margin settings were underthrust and 
stacked to build a thick root with time. Geochronologic and 
geologic evidence can be interpreted to show that the final 
formation and amalgamation of the bulk of the “mantle root” 
occurs 0.5–1 b.y. later than the age of the lithosphere from 
which it is comprised. “Silica enrichment” is not ubiquitous in 
the mantle beneath Archean crustal provinces. Where it does 
occur, it may be a heterogeneous feature possibly imparted by 
marine weathering of peridotite on the Archean ocean floor 
before it was stacked to form a mantle root.

INTRODUCTION
Cratons are defined as stable portions of the continental 

plates that have escaped tectonic reworking for long periods 

(giga-annum [Ga]). Thirty-five Archean crustal provinces are 
recognized within the cratons of continents today (Bleeker, 
2003). The largest mass of lithosphere beneath these cratons 
underlies the Moho in the mantle. Thus, the long-term strength 
and stability of a craton must be engendered in the properties 
of its mantle lithosphere, which may ultimately be tied to the 
origins of continents themselves. 

The purpose of this review is to summarize some thermal, 
petrological, and geological constraints on the evolution of 
cratonic lithosphere as sampled by kimberlites in Canada. 
Canada is centered over a large craton and has the larg-
est proportion of Archean crust in the world exposed at its 
surface, making it the focus of diamond exploration in the 
past 15 years. A significant portion of the Lithoprobe pro-
gram was devoted to the geophysical imaging of lithosphere 
beneath the craton (Fig. 1). The geophysical surveys in this 
and other such programs (e.g., DeepProbe, Kaapvaal project, 
USArray) provide a present-day interpretation of the deep 
lithosphere but by themselves do not explain its origin and 
evolution. Mantle rocks sampled as xenoliths provide the 
only “in place” record of Archean and younger processes 
beneath cratons, hence providing us with a link between 
the deep lithosphere, surface geology, and geophysical data 
(Carlson et al., 2005).
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Figure 1. Precambrian basement map of 
North America stripped of its Phanerozoic 
sedimentary cover (after Hoffman, 1988, 
1990; Ross et al., 1991). Boxes show 
locations of various geophysical transects 
within the Lithoprobe program. Also 
shown are kimberlite fields, clusters, and 
pipes, clockwise from top: SI—Somerset 
Island; O—Otish Mountains/Renard; 
KL—Kirkland lake; T—Timiskaming; 
WW—Wawa; L—Lake Ellen; S—Stockdale; 
A—Attawapiskat; K—Kyle Lake; IM—Iron 
Mountain; SL—State Line; W—Williams; 
C—Crossing Creek; FL—Fort a la Corne; 
BH—Buffalo Hills; D—Drybones Bay; 
G—Gahcho Kue; LG—Lac de Gras; 
J—Jericho.
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PALEOGEOTHERMS AND THE THERMAL HISTORY 
OF CRATONS

The cooling of the earth and the distribution of its heat 
sources have long been of interest (Pollack and Chapmen, 
1977; Verhoogen, 1956) but with few direct constraints. I exam-
ine the cooling history of cratons with a focus on the Archean 
Slave Province in Canada using available heat flow measure-
ments, geochronological data, and pressure-temperature (P-T ) 
data for xenoliths that cover a 300 km length of the province 
(Fig. 2). The P-T data are based on analyses from the same 
electron microprobe laboratory, eliminating interlaboratory 
inconsistency and enhancing precision.

The P-T arrays of xenoliths from the Gahcho Kue, Grizzly, 
and Jericho pipes in the Slave Province are identical within 
error of the thermobarometers applied, despite the fact that 
these kimberlites vary in age by 500 m.y. (Fig. 3). I fit the P-T 
arrays to a “steady state” geotherm with input parameters of 
(1) surface heat flow, heat generation, and crustal thickness 
measured in the central Slave Province (Mareschal et al., 2004); 
(2) crustal heat generation of 0.6 μWm−2 (Rudnick and Nyblade, 
1999; Russell et al., 2001); and (3) an empirical fit of change in 
thermal conductivity with depth (MacKenzie and Canil, 1999).

The thermal structure of the Slave Province mantle has not 
changed significantly in the past 500 m.y. over a scale of ~300 
km (Fig. 3). The uniform thermal structure contrasts with the 
petrologic structure, which varies vertically and laterally across 
the province. In plan view, the Slave mantle structure consists 
of three NE-striking ribbons of lithosphere with different levels 
of depletion, as deduced by garnet geochemistry (Grütter et 
al., 1999), that parallel slight changes in the direction of seismic 
anisotropy (Davis et al., 2003b) (Fig. 2). The vertical distribu-
tion of mantle peridotite in the ~180–220-km-thick lithosphere 

consists of a shallow, ultradepleted layer underlain by a deeper, 
more fertile layer (Griffin et al., 1999a; Kopylova and Russell, 
2000; Kopylova and Caro, 2004). The ultradepleted layer tapers 
to the southwest near Drybones Bay, where its base coincides 
with changes in seismic anisotropy over a narrow interval 
between 110 and 130 km depth (Carbno and Canil, 2002). This 
seismic discontinuity has been interpreted as the remnant of a 
lithospheric underthrust or “stack” (Bostock, 1998).

Although Slave Province mantle can be considered to be in 
a thermal steady-state at the time of sampling by kimberlites 
over the past 550 m.y., this state reveals nothing of when this 
equilibrium was reached, which, given the thermal time con-
stant for 200-km-thick lithosphere, is ~1–2 b.y. (Mareschal and 
Jaupart, 2006). Furthermore, the paleogeotherm gives no direct 
information on the mantle heat flow at the end of the Archean 
when the Slave Province is presumed to have “stabilized.” If 
the lithosphere was to remain strong and stabilize the craton, 
its initial temperature must have been below the steady-state 
regime, with basal heat flow the same as today (Mareschal and 
Jaupart, 2006), a condition made permissible if the lithospheric 
root formed by accretion of “cold” subducting plates.

AGE OF CRATONIC MANTLE “ROOTS”
The Re-Os isotopic system has been employed extensively 

to estimate the age of peridotitic mantle lithosphere (Pearson, 
1999). The Re/Os ratio of mantle residue decreases with melt 
extraction and over time evolves to low 187Os/188Os isotopic 
ratios. Some measure of the minimum age of the lithosphere 
can be made from 187Os/188Os by assuming all Re was lost on 
melting to produce a “Re depletion age” (TRD) of a sample.

The TRD for kimberlite-borne mantle xenoliths from the 
Slave, Wyoming, and North Atlantic (Somerset Island) provinces 
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Figure 2. Geological map of the Archean 
Slave Province (modified af ter Davis 
et al., 2003b; Kopylova and Caro, 2004) 
distinguishing Mesoarchean basement 
(deeper pink) from more juvenile crust 
to the east. Also shown are the electrical 
conductivity anomalies in the central 
Slave upper mantle ( Jones et al., 2001) 
and northeast-trending mantle domains 
of varying azimuth of S-wave anisotropy 
(arrows) in the craton (Davis et al., 2003b; 
Grütter et al., 1999). Kimberlites (some 
labeled) are shown as blue dots.
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are the same as most other Archean 
provinces (Fig. 4). These ages established 
that melt extraction to form cratonic 
litho sphere is dominantly Archean, with 
some samples showing Proterozoic and 
younger modification (Carlson et al., 2005; 
Pearson, 1999). A similar age of melt 
extraction emerges from a whole-rock 
Lu-Hf isochron of peridotites in Somerset 
Island (Schmidberger et al., 2002).

Mantle lithosphere ages correspond 
with crustal ages in Archean provinces, 
leading to the inference that cratonic 
mantle roots formed and were coupled 
to their overlying Archean crust within 
a narrow time frame and have remained 
there ever since. This scenario poses a 
paradox. Several late and post-Archean 
events attributed to heating and/or oro-
genic activity are recorded in the upper 
and lower crust of cratons in both the 
Slave and Superior provinces, as indi-
cated by late- and post-Archean ages of 

depletion ages. Simple one-dimensional 
thermal modeling shows that a thermal 
pulse causing melting and metamor-
phism in the lower crust to form late 
granite blooms need not have thermally 
imprinted the entire craton root (Davis 
et al., 2003b). Alternatively, a recent geo-
dynamic model proposes that cratonic 
lithosphere inverted its eclogite-bearing 
root during the latest Archean, causing 
melting in its lowermost crust (Percival 
and Pysklyvec, 2007). Both of the above 
models hinge on when the “root” was 
established and stabilized.

There is some reason to recognize the 
resolution and limitations of the Re-Os 
model ages for mantle lithosphere. More 
than half of the Os in mantle peridot-
ites can reside in micron-sized platinum 
group minerals (PGMs), which have a 
high-temperature stability and high par-
tition coefficient for platinum group ele-
ments (Luguet et al., 2007). The PGMs 
can remain stable throughout the melting 
interval and may be recycled into later 
generations of lithosphere, accounting 
for the anomalously old Os ages (0.5–1.0 
Ga) recorded in geologically young litho-
sphere in modern ocean basins (abyssal 
peridotites, Fig. 4). Given this attribute of 
the Re-Os system (Meibom et al., 2002), 
it is conceivable that the TRD of many 
cratonic xenolith samples may record the 
Os in PGMs that have been preserved 
from prior (Archean) melting events but 
that were later recycled into younger 
“roots.”

Eclogite xenoliths also call into ques-
tion purely Archean “root formation.” 
Eclogite xenoliths are interpreted by 
many to be representative of oceanic 
basaltic crust now embedded in cratonic 
mantle roots by lithosphere subduction 
or stacking (Helmstaedt and Schulze, 
1989; Jacob, 2004). The eclogites occur at 
various depth intervals throughout the 
Slave province mantle root (Kopylova et 
al., 1999). Based on Lu-Hf and U-Pb zir-
con systematics, these eclogites are 
demonstrably younger than the majority 
of TRD for mantle peridotites (Fig. 4), but 
correspond to identical ages of Paleo-
proterozoic subduction (ca. 2.0 Ga) 
recorded in surface geology at the 
externides of this Archean province 
(Schmidberger et al., 2007). If Protero-
zoic eclogite is a component of the root, 
then “root” formation must be Proterozoic 
even if Archean peridotite constitutes the 
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Figure 3. P-T arrays for peridotite xenoliths from 
(A) three kimberlite pipes labeled in Figure 2, 
with U-Pb ages from 553 to 55 Ma (Heaman et 
al., 2003) and with analytical data all from the 
same electron microprobe laboratory (Boyd and 
Canil, 1997; Kopylova and Caro, 2004; Kopylova 
et al., 1999). Error bars show uncertainty on 
temperature and pressure (depth). (B) Same as 
above compared to P-T data from two younger 
pipes (Aulbach et al., 2007; MacKenzie and 
Canil, 1999) which may even show a local 
“warming” mantle compared to those in (A).
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Figure 4. Frequency histograms of Re depletion 
ages for cratonic xenoliths from (A) Slave 
Province; (B) Somerset Island, the (off-craton) 
Canadian Cordillera, and abyssal peridotites; 
and (C) the Wyoming Province (data from 
Pearson, 1999; Pearson et al., 2003). Shown 
for comparison in (A) are U-Pb ages for various 
events recorded in the crust of the Slave 
Province: metamorphic zircons and rutile in 
lower crustal granulite xenoliths, late “granite 
blooms,” and Lu-Hf and U-Pb ages of eclogite 
xenoliths in the Jericho pipe.

(1) metamorphic zircon in kimberlite-
hosted lower crustal granulite xeno-
liths (Davis et al., 2003a; Moser and 
Heaman, 1997); (2) “granite blooms” in 
greenstone belts (Davis et al., 2003b); 
and (3) hydrothermal mineralization in 
lode gold deposits (Fig. 4). These wide-
spread thermal events would be at odds 
with simultaneous development below 
a well-established, deep “cold” Archean 
lithospheric root as recorded by its Re 
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bulk of the lithosphere. Thus, the age of 
the “root” formation may be younger 
than the age of the lithosphere that com-
prises the root. This hypothesis is consis-
tent with U-Pb ages from lower crustal 
granulite xenoliths, which show that the 
Slave craton root cooled through the 
U-Pb blocking temperature of metamor-
phic rutile (~400 °C) to a present-day 
cratonic geotherm only by ca. 1.8 Ga, 
well after the Archean (Fig. 4). Similarly, 
1.9-Ga sedimentary basins on the Slave 
Province record subsidence on a thinner, 
root-free thermal lithosphere at that time 
(Grotzinger and Royden, 1990).

Most intriguing is that the Re-Os ages 
of sulfides in kimberlite-borne diamonds 
sampled from the Slave Province, presum-
ably hosted in the lithosphere, are ca. 3.5 
Ga (Aulbach et al., 2004; Westerlund et 
al., 2006) and pre-date the NeoArchean 
(2.8–2.55 Ga) formation and amalgama-
tion of overlying crust by at least 0.5 b.y. 
A similar pattern is evident in the Supe-
rior Province of Canada (Stachel et al., 
2006) and in Kaapvaal of southern Africa 
(Richardson et al., 2001). In the mantle, 
sulfide is molten and potentially mobile, 
and Os has a low closure temperature 
in this phase (Brenan et al., 2000), call-
ing into question the validity of diamond 
ages from sulfide and other inclusions 
(Navon, 1999). Nonetheless, if the ages 
are taken at face value, they show that 
the formation of mantle lithosphere pre-
dates its development into a craton “root” 
below Archean crust by 0.5–1.0 Ga.

TECTONIC SETTING FOR 
CRATONIC LITHOSPHERE

Mantle lithosphere is a residue of melt 
extraction from peridotite, which at 
pressures below ~3 GPa produces oliv-
ine at the expense of all other phases 
and increases its Mg/Fe with depletion. 
This attribute of the melting process is 
reflected geochemically in residual peri-
dotites by increasing Mg/Si with increas-
ing Mg/(Mg + Fe), as exhibited by 
peridotites sampled in modern ocean 
basins, ophiolites, orogenic massifs, or 
continental basalt-hosted xenoliths (Fig. 
5). Most cratonic lithosphere is distinct 
from the latter by being depleted in Fe 
(high Mg#) but having variable Mg/Si 
(Figs. 5B and 5C) (Boyd, 1989). The 
compositional spectrum of low Fe and 
high Si in cratonic peridotites is unat-
tainable by melting of primitive mantle 

Global data sets of all types of mantle 
peridotites show a covariation of Mg/Si 
with Al/Si that is a consequence of par-
tial melt extraction (Pearson et al., 2003) 
and can be fitted to a line: [Mg/Si] = 
1.440(8) − 3.66(11) [Al/Si] (r = 0.79, 95% 
confidence) (Fig. 6). Samples scatter to 
each side of that line, having higher or 
lower Mg/Si (hereafter referred to as 
ΔMg/Si), respectively, at a given degree 
of depletion (Al/Si). The ΔMg/Si of cra-
tonic xenoliths can be compared with 
off-craton mantle to rigorously examine 
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Figure 5. Covariation of Mg/Si with Mg/(Mg 
+ Fe)(Mg#) in whole rock analyses of cratonic 
peridotite xenoliths compiled by the author 
(Canil, 2004). The large polygon represents 
primitive upper mantle peridotite (McDonough 
and Sun, 1995). (A) Off-craton xenoliths and 
spinel- and garnet-facies xenoliths (sper, gper) 
from the Slave Province and Somerset Island. 
(B) Cratonic spinel-facies. (C) Cratonic garnet-
facies xenoliths.

Figure 6. Covariation of Mg/Si with Al/Si in 
world xenolith data set as in Figure 5. (A) shows 
the trend for Canadian xenoliths compared with 
off-craton and abyssal peridotites. The line for 
all off-craton xenoliths is fitted by least squares 
to an equation of [Mg/Si] = 1.44(2) − 3.66(11) 
[Al/Si] (95% confidence, r = 0.79). Samples 
to the left or right of this line have a positive 
or negative “ΔMg/Si” value. The remaining 
panels show all (B) cratonic spinel-facies and (C) 
cratonic garnet facies mantle xenoliths.

peridotite at any pressure (Walter, 2003), 
but could be explained if they were res-
idues of a more Si-rich and Fe-poor 
chondritic mantle, which has, since the 
Archean, escaped sampling during Pro-
terozoic and younger melting processes 
(Francis, 2003). The trend to higher Si at 
a given Mg# could also be due to a sec-
ondary process (Herzberg, 2004; Kele-
men et al., 1998).
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the ubiquity (or not) of Si enrichment (low Mg/Si). The ΔMg/Si 
for cratonic mantle as a whole is normally distributed about 
zero, similar to other kinds of mantle lithosphere (Fig. 7). 
Thus, “Si enrichment” in cratonic mantle is an exception, 
occurring in a minority of samples. Indeed, the lower Mg/Si 
(or negative ΔMg/Si) observed in some cratonic peridotites is 
prevalent mostly in South Africa (Fig. 7). In modern abyssal 
peridotites, low Mg/Si at a given degree of depletion is a 
consequence of seafloor exposure and marine weathering 
(Snow and Dick, 1995). It appears possible that the lower Mg/
Si (i.e., Si enrichment, negative ΔMg/Si) in some cratonic man-
tle is due to marine weathering, if its protoliths were at one 
time exposed to Archean seawater and later subducted to 
form a craton root.

Unlike Si enrichment, Fe depletion in cratonic mantle is 
ubiquitous (Fig. 5). Given current experimental data, generat-
ing the low Fe in cratonic peridotites from primitive mantle 
sources can only occur by melting at high pressures (>5 GPa; 
Walter, 2003). This has led to the belief that cratonic mantle is 
a residue of high-pressure melting in plumes and attaches to 
the craton root vertically by “plume subcretion” (Aulbach et 
al., 2007; Griffin et al., 1999a). This mode of origin at pressures 

>5 GPa is inconsistent with a number of trends in Cr, Al, and 
mildly incompatible elements in peridotite, which preclude 
extensive melting at pressures greater than 3 GPa (Canil, 2004; 
Canil and Wei, 1992; Kelemen et al., 1998; Kesson and Ring-
wood, 1989; Stachel et al., 1998).

If produced at low pressure, low Fe in cratonic peridotites 
requires either a source with higher Mg# or melting under 
conditions that greatly change the distribution of Fe from Mg. 
Because Fe3+ is ten times more incompatible than Fe2+ (Canil 
et al., 1994), melting at higher oxygen fugacity (fO2) results in 
a residue with higher Mg/Fe for a given degree of melting. No 
experimental studies directly investigate the effect of fO2 on 
major element systematics (Mg/Fe) of mantle melting, but this 
effect can be examined using the behavior of vanadium (V), 
which is mildly incompatible and redox sensitive (Canil, 2002). 
The lower V at a given degree of depletion in many cratonic 
peridotites could result from melting at higher fO2. If this is 
correct, then by analogy with modern settings, the mantle now 
beneath Archean crustal provinces was generated in the upper 
plate of a convergent margin, consistent with a “stack” origin.

The lack of correlation of Mg# in olivine with modal olivine 
also distinguishes cratonic peridotites from Phanerozoic or 
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off-craton peridotites (Fig. 5), and the lack of correlation can 
only occur by melting to near or beyond orthopyroxene 
exhaustion (~40%) (Bernstein et al., 2007). This means the 
upper spinel facies portion of cratonic lithosphere was origi-
nally a nearly dunitic residue. This trend to extremely depleted 
lithosphere at the shallowest levels in the lithospheric column 
beneath cratons is evident in xenolith data sets from the Slave 
Province (Aulbach et al., 2007; Kopylova and Russell, 2000) 
and is an almost universal observation in mantle columns con-
structed from kimberlite-hosted garnet xenocryst suites else-
where in Canada and throughout the world (Canil et al., 2003; 
Gaul et al., 2000; Griffin et al., 1999b; Scully et al., 2004). The 
highly depleted shallow levels of mantle lithosphere beneath 
Archean provinces provide the compositional buoyancy 
required to support their cratonic roots against removal into 
the convecting mantle (Jordan, 1975; Lee, 2003; Poudjom Djo-
mani et al., 2001).

SUMMARY
The weight of thermal, petrologic, and geological evidence 

points toward an origin for lithosphere beneath Archean 
provinces in a convergent margin. Most of that lithosphere is 
Archean in age, but many lines of evidence show that the deep 
lithosphere beneath these regions did not “stack” or stabilize 
a “root” until at least 0.5 b.y. later. If so, was Archean crust 
tectonically emplaced atop the mantle lithosphere in a stack 
that in North America is more appropriately described as early 
Proterozoic in age? Why does lithospheric stacking not occur 
today? Did plate thicknesses and lengths in the Precambrian 
differ enough from the present-day to engender a more neu-
tral buoyancy, required for shallow subduction and “stacking” 
(Davies, 1992)? The level of depletion in mantle roots seems the 
key, but more sluggish plate tectonics proposed for the Archean 
(Korenaga, 2006) may also be part of the answer. Slower plates 
and fewer convergent margins with a smaller proportion of 
early continents may explain the time lag of 0.5–1 b.y. between 
lithosphere age and the age of actual mantle “root” or “stabi-
lization.” Better chronometry of mantle rocks would help test 
this idea but is made difficult by their equilibration above the 
closure temperatures of many isotopic systems.

This challenge is also an opportunity. The cooling rates of the 
continents and the transient thermal signals therein (Michaut 
and Jaupart, 2007) have the potential to be understood by the 
different closure properties for different isotopic systems in 
mantle minerals from cratonic xenoliths (Bedini et al., 2004). 
Further correlation of geophysical and geological observations 
to the petrology and geochronology of xenoliths in cratons 
densely sampled by kimberlites can address these questions.
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