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ABSTRACT
Accurately assessing the shape, size, and 

modality of features in rock samples is a 
longstanding problem in geology. Recent 
advances in machine learning have intro-
duced the possibility of performing these 
tasks through automated image analysis. To 
leverage these methods for geological and 
paleontological applications, we first need a 
way to acquire high-resolution images of 
polished slabs and thin sections with a field 
of view large enough to fit samples con-
taining crystals, fossils, bedforms, etc. We 
describe a new multispectral setup that can 
acquire images at ~3.76 mm per pixel spa-
tial resolution over a 21 cm2 field of view, 
equipped with 8-band (470–940 nm) spectral 
resolution, plus a band for ultraviolet (365 
nm) fluorescence. Additionally, we present a 
5-band (470–940 nm) light table with auto-
mated rotating polarizers, which allows use 
of the camera as a high-throughput transmit-
ted light thin section imager. The use of color 
bands outside the visible spectrum, as well as 
the registration of multiple cross-polarized 
rotations, encode rock properties that 
heighten image contrast and improve the 
accuracy of machine learning models. Our 
setup and methods provide an efficient way 
to (1) build reproducible image archives of 
rock specimens to complement field obser-
vations, (2) classify and segment those 
images, and (3) quantitatively compare litho-
facies and fossil assemblages.

INTRODUCTION
Geologists have developed an eye for the 

physical rock characteristics that encode 
Earth’s sedimentary, igneous, and meta- 

morphic history. At points on a map or beds 
in a stratigraphic section, lithofacies obser-
vations from field campaigns form the 
backbone of geologic study. Throughout 
recent decades, the rise of geochemical 
techniques has increased the value of sam-
ples brought back from the field. For exam-
ple, many measured sections through car-
bonate stratigraphies now include bed-by-bed 
isotope and trace element measurements 
that give insights into local carbon cycling 
(Ahm et al., 2021), global marine redox 
state (Dahl et al., 2019), sediment diagene-
sis (Ahm et al., 2018), and correlations 
within (Hay et al., 2019) and between basins 
(Halverson et al., 2005; Maloof et al., 2010). 
However, reliable interpretations of these 
geochemical data benefit from knowledge 
of the physical properties of the rock sam-
ples, such as grain/crystal sizes and modal-
ities (Geyman and Maloof, 2021), primary 
mineralogy, porosity/permeability, and 
cross-cutting relationships between fabrics 
(Bergmann et al., 2011; Hood et al., 2016; 
Corsetti et al., 2006; Dyer et al., 2017)—
data that also serve to refine analyses of 
sedimentary environment (Geyman et al., 
2021). The above examples come from sedi-
mentary geology, but the need to match 
geochemical data to quantitative lithofacies 
also applies to interpretations of igneous 
and metamorphic conditions (Higgins, 2000).

Workers have developed methods to 
approximate rock contents from samples, 
often by point counting on the stage of a 
microscope (Shand, 1916). Although this 
technique has brought about many geologi-
cal insights, the uncertainties that stem 
from incompletely sampling a rock’s surface 

are significant (Solomon, 1963; Neilson and 
Brockman, 1977), and the small fields of 
view available in most microscopes limit 
the scale of features studied to those only a 
few millimeters in size (Higgins, 2000). To 
build on previous petrographic findings and 
contextualize geochemical data, we can 
develop techniques to quantify lithofacies 
over a broader range of feature sizes and 
with more continuous spatial sampling.

New Potential for Petrographic Data 
through Image Analysis

Geologists could outline, count, and mea-
sure all the fossils, grains, or crystals in sam-
ples to extract these data, but manual petro-
graphic study is too time-consuming to 
accompany each of the hundreds or thou-
sands of geochemical measurements and 
observations made on a single map. We can, 
however, turn to recent advances in machine 
learning that have introduced the possibility 
of training models to recognize rock fea-
tures (Yesiloglu-Gultekin et al., 2012; 
Koeshidayatullah et al., 2020). The need for 
automated feature classification is familiar 
to many fields, and effective solutions now 
are being realized in industries such as 
autonomous vehicles (Tian et al., 2018) and 
biomedical image processing (Li et al., 2018).

A variety of machine learning models 
can be trained to perform these tasks, but 
they all learn to classify image features 
through repeated practice on example images 
manually labeled by humans (LeCun et al., 
1989), and some of the most effective mod-
els for general applications require more 
than 300,000 traced examples (Lin et al., 
2014; He et al., 2017). Prior to training an 
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equivalent model to recognize rock fea-
tures, we first need to think about the prop-
erties of the images themselves and how 
well they capture those features. A potential 
advantage for automated classification of 
rock elements is that geological materials 
are made up of minerals with distinctive 
reflectance (Bishop et al., 2019) and bire-
fringence (Cesare et al., 2022) characteris-
tics. Capturing these spectral properties 
with a camera sensitive to more color bands 
than the human eye can heighten contrast 
between features in images and reduce the 
number of training examples needed for 
accurate classification models (Soomro et 
al., 2017). Here, we introduce a multispec-
tral camera optimized for petrographic 
study, which can facilitate image analysis as 
a laboratory method to complement other 
geochemical and geophysical measurements.

IMAGING SETUP
The imaging setup presented herein is a 

modification of the grinding, imaging, and 
reconstruction instrument (GIRI), housed 
at Princeton University (Mehra and Maloof, 
2018). While GIRI is a specialized solution 
for either two- or three-dimensional imag-
ing, a similar imaging setup could be real-
ized independent of GIRI with widely avail-
able cameras and lights.

Field of View and Spatial Resolution
There is a trade-off between field of view 

(FOV) and spatial resolution, and so a cam-
era for geological samples must balance 
these two variables to capture a broad size 
range of rock features. For many geological 
applications, pixels on the order of 5 µm are 
needed to maintain sharp grain boundaries. 
Most current camera attachments for petro-
graphic or dissecting microscopes achieve 
this resolution or greater, but only with 
FOVs smaller than 1 cm2, which limits 
feature sizes and can add uncertainty to 
modality data.

To maintain high spatial resolution while 
expanding FOV, we design our camera 
around the continually improving technolo-
gies of optical sensors and macro lenses. 
Our camera sensor is a Phase One IQ4 
150-megapixel digital back (Fig. 1D), which 
measures 4.04 × 5.37 cm with 3.76 µm pix-
els. We use a 120 mm Schneider Kreuznach 
apochromatic macro lens, which enables 
1:1 photography with an FOV and pixel res-
olution equal to the dimensions of the digi-
tal back. Other lenses can be substituted 
to increase FOV at the cost of per-pixel 

resolution. To reduce glare and improve image 
contrast, we place a broadband polarizer over 
the lens.

Spectral Resolution
One of the key lessons learned from 50 

years of satellite-based remote sensing of 
Earth’s surface is the utility of bands out-
side the traditional red-green-blue (RGB) 
visible spectrum to take advantage of the 
unique reflective characteristics of rocks 
and vegetation (Melesse et al., 2007). The 
reflective properties of certain geological 
materials in the visible to near-infrared 
(VNIR; 300–1100 nm) spectrum still apply 
at the scale of a hand sample and can be 
used by a petrographic camera to maximize 
feature contrast and aid segmentation.

Increasing the range and number of light 
spectra imaged usually diminishes spatial 
resolution because increasingly long wave-
length (>1000 nm) and/or narrowband light 
sources are low intensity, meaning cameras 
designed for hyperspectral imaging must 
have larger pixels to gather enough photons 
to form a signal. Thus, we cannot design an 

imager with continuous spectral coverage 
throughout the VNIR spectrum and instead 
choose to optimize for the trade-off between 
spatial and spectral resolution (Ma et al., 
2014). Our optical sensor (sensitive from 300 
to 1000 nm) maintains the highest available 
spatial resolutions while still detecting 
important spectral properties beyond RGB. 
In particular, metallic oxides, clay minerals, 
pyroxenes, and olivines have absorption 
bands at wavelengths less than 1000 nm that 
can enhance contrast between geological 
classes (Bishop et al., 2019; Fig. 1A).

We create color channels by illuminating 
samples with an array of eight Smart Vision 
S75 narrowband LEDs (Fig. 1D), which can 
be chosen from any of the ten wavelengths 
shown in Figure 1A. We inform our selec-
tion of lights through preliminary tests for 
maximized feature contrast and equip all 
lights with a polarizing film to reduce glare.

Ultraviolet (UV) Fluorescence
In a dark laboratory setting, fluorescence 

from minerals like carbonates and phosphates 
can add contrast when imaged in the visible 

Figure 1. Motivating principles and setups for multispectral petrographic imaging with both reflected 
and transmitted light. (A) The addition of bands within the sensitivity range of a standard optical sen-
sor allows for the sampling of distinctive spectral characteristics, such as the hematite peak and 
trough near 750 nm and 850 nm, respectively. (B) Ultraviolet (UV) fluorescence is an informative source 
of contrast when studying materials responsive to UV light, like the apatitic and organic components 
of this fish fossil (from Tischlinger and Arratia, 2013). (C) Traditional cameras filter incoming light to 
just red, green, and blue signals, limiting spectral range and reducing the spatial resolution of each 
color. We use narrowband lights (one at a time), which allows us to capture signals from the full range 
of sensitivity, and at the full resolution of the optical sensor. (D) Photograph of our setup. RGB—red-
green-blue; VNIR—visible to near-infrared.
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spectrum. For example, in carbonate rocks at 
successive stages of calcite precipitation, 
diagenesis, and recrystallization, differ-
ences in the trace element chemistry of 
the stages will produce heterogeneities in 
the strength of f luorescence and thus con-
trast in the image (Dravis and Yurewicz, 
1985). Additionally, organic or apatitic fossil 
materials often fluoresce, making UV fluo-
rescence photography a valuable tool for cre-
ating contrast in paleontological samples 
(Tischlinger and Arratia, 2013; Fig. 1B). To 
image fluorescence, we illuminate samples 
with a 365 nm SmartVision LED. To reduce 
noise in the images, we place a bandpass fil-
ter with a cut-off wavelength of 395 nm over 
the UV light to remove any visible compo-
nents of the emitted spectrum and use a 400 
nm cut-on UV filter in front of the lens to 
eliminate any UV light from reaching the 
camera sensor. Note that when imaging with 
UV, the camera records the fluorescence of 
the materials in the VNIR spectrum.

Transmitted Light
Thin section transmitted light imagery 

offers another opportunity for increased con-
trast. Anisotropy, cleavage, and twinning 
create distinctive qualities in grains and 
crystals within a thin section and delineate 

grain boundaries (Rogers and Kerr, 1942). 
Additionally, crossed polarizers in transmit-
ted light setups heighten contrast between 
features by creating differential extinction 
and birefringence patterns (Rogers and Kerr, 
1942). To image thin sections with transmit-
ted plane-polarized (PPL) and cross-polar-
ized (XPL) light, we have created a light 
table that can be used with GIRI or any cam-
era stand setup (Fig. 1D). The light source for 
this table is a dense Ramona Optics LED 
board with five wavelengths (470, 530, 620, 
850, 940 nm), which illuminates the sample 
through a diffuser and a broadband linear 
polarizer. To image XPL, we attach a second 
polarizer over the sample, perpendicular to 
the lower linear polarizer (Fig. 1D). Unlike 
traditional petrographic microscopes, this 
light table holds the sample fixed, while a 
NEMA 17 stepper motor rotates both polar-
izers synchronously (Fueten, 1997) with a 
precision of 2.8 × 10−4 degrees.

Data Processing
In the case of both transmitted and 

reflected light, all captured image channels 
are perfectly aligned, allowing the user to 
view any three channels in a false color 
image or analyze all captures as a single mul-
tichannel image. Our setup, like all cameras, 

contends with chromatic aberration, whereby 
each wavelength of light achieves maximal 
sharpness at a different focal depth due to the 
wavelength-dependence of light refraction 
(Jacobson et al., 2013). In the supplemental 
material1, we demonstrate how we apply blur 
modeling and deconvolution to achieve 
multispectral images that are sharper than a 
standard RGB camera.

RESULTS
In the following case studies, we illustrate 

two examples where the added spectral data 
from our reflected and transmitted light set-
ups enhance our ability to distinguish fea-
tures within geological samples. To classify 
pixels, we use a support vector machine 
(SVM), which is a simple machine learning 
model, to show the potential for future 
machine learning efforts when trained on 
these more informative spectral data.

Case Study 1: Feature Mapping in 
Reflected Light

A lack of contrast between classes in 
ref lected light imagery commonly stems 
from all pixel values falling near a brightness 
line—a 1:1 intensity line where values are 
well-correlated between channels (Fig. 2B). 
In Figure 2A, we show an RGB image of an 

Figure 2. Improved segmentation results with multispectral reflected light imagery. (A) We take the same image of an archaeocyathid boundstone sample 
in a traditional red-green-blue (RGB) colorspace, as well as a false color ultraviolet (UV)-yellow-red space and sample the same pixels for four feature 
classes in each (colored boxes). (B) In the RGB image, all classes show covariance between color channels, and most pixels fall around the brightness line. 
(C) In the UV-yellow-red (UV-Y-R) image, covariance between channels is removed for all classes, as evidenced by the fourfold increase in average distance 
between each pixel and the brightness line (reported as total least squares, TLS). The movement of all classes away from the brightness line into distinct 
regions of the color space eases segmentation. (D–F) Using a support vector machine (SVM), an automated classification of the RGB image is 65% accurate 
and does not give high-resolution borders between classes and regions (D, E). In contrast, an SVM segmentation of the UV-yellow-red image is 91% accu-
rate and gives sharp region and class boundaries more suitable for measurements (D, F).

1Supplemental Material. This supplement is intended to show our multispectral setup in more detail and explain how we mitigate chromatic aberration. We include a figure 
with annotated computer-aided design renderings of our transmitted and reflected light setups, and details for our light emission spectra. The text begins with background 
on the problem of chromatic aberration, details our experimental setup and blur modeling calculations, and discusses our final results. Go to https://doi.org/10.1130/
GSAT.S.19773532 to access the supplemental material; contact editing@geosociety.org with any questions.
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archaeocyathid boundstone sample, wherein 
each of the four classes (dolomite, micritic 
calcite, archaeocyathid, and calcite-filled 
crack) shows well-correlated pixel values 
(Fig. 2B). When segmenting these samples, 
the class overlap in RGB space hinders pixel-
wise classification, leading to uncertain 
boundaries between classes (Figs. 2D and 
2E). The same image in a UV-yellow-red col-
orspace (Fig. 2A) shows reduced channel 
covariance for all four classes (Fig. 2C). 
With the new spectral information available 
in UV-yellow-red space, an SVM has 30% 
improved accuracy, and produces resolved 
regions with distinct boundaries for each 
class (Figs. 2D and 2F).

Case Study 2: Feature Mapping in 
Transmitted Light

A primary limitation of performing image 
analysis on thin sections with existing micro-
scope cameras is the FOV. In this example, 
we use a granite sample from the Golden 
Horn Batholith (Eddy et al., 2016) that has 
crystals with diameters approaching 1 cm. 

Because these crystals are large relative to a 
microscope FOV (Fig. 3A), the concentration 
of minerals in an image will be variable 
depending on the portion of the thin section 
placed under the lens. For example, the con-
centration of plagioclase assessed through 
classification may range from 29% to 55% 
when using the 2.5× objective on a petro-
graphic microscope (Fig. 3H). The variation 
in concentrations increases if magnification 
increases (reducing FOV) or point counts are 
used to assess modality as opposed to pixel 
classifications (Fig. 3H).

This example also illustrates the benefit 
of building additional image channels from 
polarizer orientations (as opposed to addi-
tional wavelengths of light). With a single 
RGB image from one orientation of the 
crossed polarizers, capturing all possible 
birefringence and extinction properties for 
a given mineral class in a training set can be 
difficult and time-consuming, and the end 
result can be inaccurate classification (Fig. 
3F). When multiple rotation XPL images 
are stacked together in the training set, each 

pixel takes on a broader range of the color 
and textural properties that a mineral may 
exhibit in cross-polarized light, which helps 
the machine learning model generalize and 
leads to more accurate classifications with 
the same number of training samples (Figs. 
3C, 3D, and 3G).

DISCUSSION
Because our camera improves outcomes 

when using machine learning techniques to 
produce petrographic data, we now are 
focused on high-throughput methods for 
complete sample image analyses within 
stratigraphic sections or geologic maps. Our 
workflow takes the same samples gathered 
for geochemical or geophysical laboratory 
analyses and photographs them as pol-
ished slabs and/or thin sections. As an 
example, we created a bed-by-bed library 
containing nearly 2,000 images that chroni-
cles paleoenvironmental change through 
the lower Ordovician Kinblade Formation 
(Fig. 4). Within a single map or section, sys-
tematic image analysis can yield lithofacies 

Figure 3. Improved modality data from multiple rotations of crossed polarizers for transmitted light imagery of thin sections. (A) Red-green-blue (RGB), cross-
polarized (XPL) image of a granite thin section from the Golden Horn Batholith showing the full field of view (FOV) possible with our setup compared to those 
obtainable with a microscope camera. (B) False color image obtained using green (530 nm) light at three separate XPL orientations, 18° apart. (C) In principal 
component (PC) space, the pixel values for the four mineral classes (quartz, plagioclase, orthoclase, and mafics) in a single rotation RGB XPL image mostly 
overlap in one area of the plot. For an RGB XPL image containing five 18° rotations stacked into a 15-channel image, the pixel values spread out into a cone, 
where the position on the cone occupied by a given pixel relates to the class of the mineral and the relative orientation of its crystallographic axis. This added 
separation of the classes in the PC space of the five rotation XPL image improves the accuracy of pixel classifications from machine learning models, like the 
example given in (D). (E–G) In a zoomed-in portion of the image (E), we see that a support vector machine (SVM) using just a single rotation XPL RGB image 
(F) is 27% less accurate at classifying pixels compared to an SVM that is given the five-rotation image (G). Even with accurate classifications, analyzing only 
a relatively small FOV can add uncertainty. We see in (H) that the resulting modality data from the classification in (C) have highly variable values when 
assessed within the FOV of a traditional petrographic microscope. Each point in the plot represents the modality assessed in a randomly selected area of the 
segmentation equal to the size of a microscope FOV using either a 2.5× or 10× objective. The variation in these errors between classes stems from the char-
acteristic size and relative abundance of the minerals. (I) To show the effect of crystal size and abundance, we calculate the number of images that correctly 
estimate the modality of a given mineral in a view size normalized to the mineral abundance (determined using a 4.5 × 5.5 × 4 cm 3D grinding, imaging, and 
reconstruction instrument [GIRI] reconstruction of the sample). In an experiment randomly drawing thin sections from the full volume of this granite sample, 
we see that an approximately equal fraction of images estimates the mafic mineral modality within a 90% correctness threshold when comparing GIRI to a 
2.5× microscope objective. However, at the 95% threshold, as well as with the larger plagioclase crystals, the GIRI FOV performs nearly twice as well.
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Figure 4. Example of a reproducible, quantitative lithofacies data set. (A) The lower Ordovician Kinblade Formation outcropping in Ardmore Oklahoma (GPS 
location: 34.372821, –97.145353) is a 791 m succession of carbonate strata containing 1,922 beds. (B) Following bed-by-bed field study, sampling, and geo-
chemical measurement, we epoxy 1 cm2 chips from each sample for efficient grinding, polishing, and imaging. The chip size is chosen to best encapsulate 
the dominant grain, fossil, and bedform sizes in the data set. The resulting ~2,000 images (examples C–E, shown here in red-green-blue space, but all are 
8-channel multispectral images) now are a documentation of the lithofacies in the measured section at Ardmore and ready for image analysis, classifica-
tion, segmentation, and interpretation.

data that quantify spatio-temporal patterns 
in grain, crystal, and fossil characteristics, 
while allowing new tests of geochemical 
interpretations (e.g., Geyman and Maloof, 
2021; Ahm et al., 2019).

At the same time, amassing a standard-
ized, multispectral image library with 
annotated examples (Deng et al., 2009) of 
geologic features from many localities will 
help train more general machine learning 
models for petrography. These collections 
of slab and thin-section images are a first 
step toward the goal of automated routines 
to measure features in rock samples from 
pictures. Curated image libraries also can 
serve as a classroom tool for teaching petrog-
raphy, and student work to classify images 
can provide training examples for machine 
learning—a crowdsourcing technique that 
has seen recent success in several fields 
(e.g., van den Bergh et al., 2021).

In addition to improving lithofacies data, 
we see our camera and petrographic images 
as a vehicle to improve access and reproduc-
ibility in geology. Open access to archives 
like Integrated Ocean Drilling Program 
(IODP) cores has expanded the number of 
people producing complementary data sets 
and provided for deeper, more reproducible 
studies of Earth’s climate and oceans in 
recent geologic periods (Becker et al., 2019). 
A similar framework should exist for rock 
outcrops that span deeper into Earth’s his-
tory, where, currently, the observations that 
form geologic maps and stratigraphic sections 

tend to be documented primarily in field 
notes or illustrative outcrop/sample photo-
graphs. For corroboration or expansion upon 
previous outcrop-based studies, this system 
requires workers to visit the locality them-
selves. Instead, open access to standardized 
petrographic image collections will allow 
broader groups of researchers to measure 
and interpret features in rock formations from 
around the world, enhancing both reproduc-
ibility (Baker, 2016) and diversity, equity, 
and inclusion (Fernandes et al., 2020) in geol-
ogy. Although our archives are not contin-
uous records like IODP cores, they benefit 
from the added spatial context available at 
rock outcrops and provide a zoomed-in per-
spective to supplement constantly improv-
ing aerial survey techniques (Shah et al., 
2021). In concert with satellite, drone-derived, 
and hand-held imagery, our pipeline for sys-
tematic imaging, classification, and mea-
surement of rock samples can form an 
important layer in multiscale digitization 
and interpretation of physical rock properties.
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