Page 9 - i1052-5173-29-12
P. 9

Reitner, J., 2016, A rare glimpse of Paleo-  prospects: Annual Review of Astronomy and   Laskar, J., Correia, A.C.M., Gastineau, M.,
            archean life: Geobiology of an exceptionally   Astrophysics, v. 51, p. 21–61, https://doi.org/   Joutel, F., Levrard, B., and Robutel, P., 2004,
            preserved microbial mat facies from the    10.1146/annurev-astro-081811-125539.  Long term evolution and chaotic diffusion of
            3.4 Ga Strelley Pool Formation, Western   Hoke, M.R.T., and Hynek, B.M., 2009, Roaming   the insolation quantities of Mars: Icarus,
            Australia: PLoS One, v. 11, no. 1, https://   zones of precipitation on ancient Mars as   v. 170, p. 343–364, https://doi.org/10.1016/
            doi.org/10.1371/journal.pone.0147629.  recorded in valley networks: Journal of   j.icarus.2004.04.005.
          Farquhar, J., and Wing, B.A., 2003, Multiple   Geophysical Research, v. 114, E08002,    Lasue, J., Quesnel, Y., Langlais, B., and Chasse-
            sulfur isotopes and the evolution of the   https://doi.org/10.1029/2008JE003247.  fière, E., 2015, Methane storage capacity of the
            atmosphere: Earth and Planetary Science   Hoke, M.R.T., Hynek, B.M., and Tucker, G.E.,   early martian cryosphere: Icarus, v. 260,
            Letters, v. 213, p. 1–13, https://doi.org/   2011, Formation timescales of large martian   p. 205–214, https://doi.org/10.1016/j.icarus
            10.1016/S0012-821X(03)00296-6.     valley networks: Earth and Planetary Science   .2015.07.010.
          Fassett, C.I., and Head, J.W., III, 2008a, The   Letters, v. 312, p. 1–12, https://doi.org/10.1016/   Le Hir, G., Teitler, Y., Fluteau, F., Donnadieu, Y., and
            timing of martian valley network activity:   j.epsl.2011.09.053.      Philippot, P., 2014, The faint young Sun problem
            Constraints from buffered crater counting:   Holland, H.D., 2006, The oxygenation of the   revisited with a 3-D climate-carbon model—
            Icarus, v. 195, p. 61–89, https://doi.org/   atmosphere and oceans: Philosophical   Part 1: Climate of the Past, v. 10, p. 697–713,
            10.1016/j.icarus.2007.12.009.      Transactions of the Royal Society of London,   https://doi.org/10.5194/cp-10-697-2014.
          Fassett, C.I., and Head, J.W., III, 2008b, Valley   Series B, Biological Sciences, v. 361, p. 903–  McSween, H.Y., and 41 others, 2006, Character-
            network-fed, open-basin lakes on Mars:   915, https://doi.org/10.1098/rstb.2006.1838.  ization and petrologic interpretation of
            Distribution and implications for Noachian   Howard, A.D., Moore, J.M., and Irwin, R.P., III,   olivine-rich basalts at Gusev Crater, Mars:
            surface and subsurface hydrology: Icarus,   2005, An intense terminal epoch of wide-  Journal of Geophysical Research, v. 111,
            v. 198, p. 37–56, https://doi.org/10.1016/   spread fluvial activity on early Mars: 1. Valley   E02S10, https://doi.org/10.1029/2005JE002477.
            j.icarus.2008.06.016.              network incision and associated deposits:   Meibom, S., Mathieu, R.D., and Stassun, K.G.,
          Fassett, C.I., and Head, J.W., III, 2011, Sequence   Journal of Geophysical Research, v. 110,   2009, Stellar rotation in M35: Mass-period
            and timing of conditions on early Mars:   E12S14, https://doi.org/10.1029/2005JE002459.  relations, spin-down rates, and gyrochronol-
            Icarus, v. 211, p. 1204–1214, https://doi.org/   Hynek, B.M., Beach, M., and Hoke, M.R.T., 2010,   ogy: The Astrophysical Journal, v. 695,
            10.1016/j.icarus.2010.11.014.      Updated global map of martian valley networks   p. 679–694, https://doi.org/10.1088/0004
          Feulner, G., 2012, The faint young Sun problem:   and implications for climate and hydrologic   -637X/695/1/679.
            Reviews of Geophysics, v. 50, RG2006,    processes: Journal of Geophysical Research,   Meibom, S., and 19 others, 2011, The Kepler
            https://doi.org/10.1029/2011RG000375.  v. 115, E09008, https://doi.org/10.1029/   cluster study: Stellar rotation in NGC 6811:
          Forget, F., Wordsworth, R., Millour, E.,   2009JE003548.                The Astrophysical Journal, Letters, v. 733,
            Madeleine, J.-B., Kerber, L., Leconte, J.,   Irwin, R.P., III, Howard, A.D., Craddock, R.A.,   https://doi.org/10.1088/2041-8205/733/1/L9.
            Marcq, E., and Haberle, R.M., 2012, 3D   and Moore, J.M., 2005, An intense terminal   Meibom, S., Barnes, S.A., Platais, I., Gilliland,
            modelling of the early martian climate under    epoch of widespread fluvial activity on early   R.L., Latham, D.W., and Mathieu, R.D., 2015,
            a denser CO  atmosphere: Temperatures and   Mars: 2. Increased runoff and paleolake   A spin-down clock for cool stars from
                    2
            CO  ice clouds: Icarus, v. 222, p. 81–99,   development: Journal of Geophysical   observations of a 2.5-billion-year-old cluster:
              2
            https://doi.org/10.1016/j.icarus.2012.10.019.  Research, v. 110, E12S15, https://doi.org/   Nature, v. 517, p. 589–591, https://doi.org/
          Gallet, F., and Bouvier, J., 2015, Improved   10.1029/2005JE002460.     10.1038/nature14118.
            angular momentum evolution model for   Jakosky, B.M., and Carr, M.H., 1985, Possible   Minton, D.A., and Malhotra, R., 2007, Assessing
            solar-like stars II. Exploring the mass   precipitation of ice at low latitudes of Mars   the massive young Sun hypothesis to solve the
            dependence: Astronomy & Astrophysics,   during periods of high obliquity: Nature, v. 315,   warm young Earth puzzle: The Astrophysical
            v. 577, A98, https://doi.org/10.1051/0004-6361/   p. 559–561, https://doi.org/10.1038/315559a0.  Journal, v. 660, p. 1700–1706, https://doi.org/
            201525660.                       Kasting, J.F., 1991, CO  condensation and the   10.1086/514331.
                                                            2
          Goudge, T.A., Fassett, C.I., Head, J.W., Mustard,   climate of early Mars: Icarus, v. 94, p. 1–13,   Noffke, N., 2008, Turbulent lifestyle: Microbial
            J.F., and Aureli, K.L., 2016, Insights into   https://doi.org/10.1016/0019-1035(91)90137-I.  mats on Earth’s sandy beaches—Today and
            surface runoff on early Mars from paleolake   Kasting, J.F., 2014, Atmospheric composition of   3 billion years ago: GSA Today, v. 18, no. 10,
            basin morphology and stratigraphy: Geology,   Hadean–early Archean Earth: The importance   p. 4–9, https://doi.org/10.1130/GSATG7A.1.
            v. 44, no. 6, p. 419–422, https://doi.org/   of CO, in Shaw, G.H., ed., Earth’s Early   Ody, A., Poulet, F., Bibring, J.-P., Loizeau, D.,
            10.1130/G37734.1.                  Atmosphere and Surface Environment:   Carter, J., Gondet, B., and Langevin, Y., 2013,
          Gough, D.O., 1981, Solar interior structure and   Geological Society of America Special Paper   Global investigation of olivine on Mars:
            luminosity variations: Solar Physics, v. 74,   504, p. 19–28, https://doi.org/10.1130/   Insights into crust and mantle compositions:
            p. 21–34, https://doi.org/10.1007/BF00151270.  2014.2504(04).         Journal of Geophysical Research, Planets,
          Grotzinger, J.P., and Knoll, A.H., 1999, Stromato-  Kite, E.S., Williams, J.-P., Lucas, A., and   v. 118, p. 234–262, https://doi.org/10.1029/
            lites in Precambrian carbonates: Evolutionary   Aharonson, O., 2014, Low palaeopressure of   2012JE004149.
            mileposts or environmental dipsticks?: Annual   the martian atmosphere estimated from the   Ojakangas, R.W., Srinivasan, R., Hegde, V.S.,
            Review of Earth and Planetary Sciences, v. 27,   size distribution of ancient craters: Nature   Chandrakant, S.M., and Srikantia, S.V., 2014,
            p. 313–358, https://doi.org/10.1146/annurev   Geoscience, v. 7, no. 5, p. 335–339, https://   The Talya Conglomerate: An Archean (~2.7
            .earth.27.1.313.                   doi.org/10.1038/ngeo2137.          Ga) glaciomarine formation, western Dharwar
          Haqq-Misra, J.D., Domagal-Goldman, S.D.,   Koeppen, W.C., and Hamilton, V.E., 2008,   craton, southern India: Current Science,
            Kasting, P.J., and Kasting, J.F., 2008, A revised,   Global distribution, composition, and   v. 106, p. 387–396.
            hazy methane greenhouse for the Archean   abundance of olivine on the surface of Mars   Oze, C., and Sharma, M., 2005, Have olivine,
            Earth: Astrobiology, v. 8, no. 6, p. 1127–1137,   from thermal infrared data: Journal of   will gas: Serpentinization and the abiogenic
            https://doi.org/10.1089/ast.2007.0197.  Geophysical Research, v. 113, E05001,    production of methane on Mars: Geophysical
          Hartman, J.D., Gaudi, B.S., Pinsonneault, M.H.,   https://doi.org/10.1029/2007JE002984.  Research Letters, v. 32, L10203, https://
            Stanek, K.Z., Holman, M.J., McLeod, B.A.,   Kvenvolden, K.A., 1993, A primer on gas   doi.org/10.1029/2005GL022691.
            Meibom, S., Barranco, J.A., and Kalirai, J.S.,   hydrates, in Howell, D.G., ed., The Future    Oze, C., and Sharma, M., 2007, Serpentinization
            2009, Deep MMT transit survey of the open   of Energy Gases: U.S. Geological Survey   and the inorganic synthesis of H  in planetary
                                                                                                       2
            cluster M37. III. Stellar rotation at 550 Myr:   Professional Paper 1570, p. 279–291.  surfaces: Icarus, v. 186, p. 557–561, https://
            The Astrophysical Journal, v. 691, p. 342–364,   Laskar, J., Joutel, F., and Robutel, P., 1993,   doi.org/10.1016/j.icarus.2006.09.012.
            https://doi.org/10.1088/0004-637X/691/1/342.  Stabilization of the Earth’s obliquity by the   Palumbo, A.M., Head, J.W., and Wordsworth,
          Haxton, W.C., Robertson, R.G.H., and Serenelli,   Moon: Nature, v. 361, p. 615–617, https://   R.D., 2018, Late Noachian Icy Highlands
            A.M., 2013, Solar neutrinos: Status and   doi.org/10.1038/361615a0.   climate model: Exploring the possibility of

                                                                                       www.geosociety.org/gsatoday  9
   4   5   6   7   8   9   10   11   12   13   14