Page 9 - i1052-5173-29-12
P. 9
Reitner, J., 2016, A rare glimpse of Paleo- prospects: Annual Review of Astronomy and Laskar, J., Correia, A.C.M., Gastineau, M.,
archean life: Geobiology of an exceptionally Astrophysics, v. 51, p. 21–61, https://doi.org/ Joutel, F., Levrard, B., and Robutel, P., 2004,
preserved microbial mat facies from the 10.1146/annurev-astro-081811-125539. Long term evolution and chaotic diffusion of
3.4 Ga Strelley Pool Formation, Western Hoke, M.R.T., and Hynek, B.M., 2009, Roaming the insolation quantities of Mars: Icarus,
Australia: PLoS One, v. 11, no. 1, https:// zones of precipitation on ancient Mars as v. 170, p. 343–364, https://doi.org/10.1016/
doi.org/10.1371/journal.pone.0147629. recorded in valley networks: Journal of j.icarus.2004.04.005.
Farquhar, J., and Wing, B.A., 2003, Multiple Geophysical Research, v. 114, E08002, Lasue, J., Quesnel, Y., Langlais, B., and Chasse-
sulfur isotopes and the evolution of the https://doi.org/10.1029/2008JE003247. fière, E., 2015, Methane storage capacity of the
atmosphere: Earth and Planetary Science Hoke, M.R.T., Hynek, B.M., and Tucker, G.E., early martian cryosphere: Icarus, v. 260,
Letters, v. 213, p. 1–13, https://doi.org/ 2011, Formation timescales of large martian p. 205–214, https://doi.org/10.1016/j.icarus
10.1016/S0012-821X(03)00296-6. valley networks: Earth and Planetary Science .2015.07.010.
Fassett, C.I., and Head, J.W., III, 2008a, The Letters, v. 312, p. 1–12, https://doi.org/10.1016/ Le Hir, G., Teitler, Y., Fluteau, F., Donnadieu, Y., and
timing of martian valley network activity: j.epsl.2011.09.053. Philippot, P., 2014, The faint young Sun problem
Constraints from buffered crater counting: Holland, H.D., 2006, The oxygenation of the revisited with a 3-D climate-carbon model—
Icarus, v. 195, p. 61–89, https://doi.org/ atmosphere and oceans: Philosophical Part 1: Climate of the Past, v. 10, p. 697–713,
10.1016/j.icarus.2007.12.009. Transactions of the Royal Society of London, https://doi.org/10.5194/cp-10-697-2014.
Fassett, C.I., and Head, J.W., III, 2008b, Valley Series B, Biological Sciences, v. 361, p. 903– McSween, H.Y., and 41 others, 2006, Character-
network-fed, open-basin lakes on Mars: 915, https://doi.org/10.1098/rstb.2006.1838. ization and petrologic interpretation of
Distribution and implications for Noachian Howard, A.D., Moore, J.M., and Irwin, R.P., III, olivine-rich basalts at Gusev Crater, Mars:
surface and subsurface hydrology: Icarus, 2005, An intense terminal epoch of wide- Journal of Geophysical Research, v. 111,
v. 198, p. 37–56, https://doi.org/10.1016/ spread fluvial activity on early Mars: 1. Valley E02S10, https://doi.org/10.1029/2005JE002477.
j.icarus.2008.06.016. network incision and associated deposits: Meibom, S., Mathieu, R.D., and Stassun, K.G.,
Fassett, C.I., and Head, J.W., III, 2011, Sequence Journal of Geophysical Research, v. 110, 2009, Stellar rotation in M35: Mass-period
and timing of conditions on early Mars: E12S14, https://doi.org/10.1029/2005JE002459. relations, spin-down rates, and gyrochronol-
Icarus, v. 211, p. 1204–1214, https://doi.org/ Hynek, B.M., Beach, M., and Hoke, M.R.T., 2010, ogy: The Astrophysical Journal, v. 695,
10.1016/j.icarus.2010.11.014. Updated global map of martian valley networks p. 679–694, https://doi.org/10.1088/0004
Feulner, G., 2012, The faint young Sun problem: and implications for climate and hydrologic -637X/695/1/679.
Reviews of Geophysics, v. 50, RG2006, processes: Journal of Geophysical Research, Meibom, S., and 19 others, 2011, The Kepler
https://doi.org/10.1029/2011RG000375. v. 115, E09008, https://doi.org/10.1029/ cluster study: Stellar rotation in NGC 6811:
Forget, F., Wordsworth, R., Millour, E., 2009JE003548. The Astrophysical Journal, Letters, v. 733,
Madeleine, J.-B., Kerber, L., Leconte, J., Irwin, R.P., III, Howard, A.D., Craddock, R.A., https://doi.org/10.1088/2041-8205/733/1/L9.
Marcq, E., and Haberle, R.M., 2012, 3D and Moore, J.M., 2005, An intense terminal Meibom, S., Barnes, S.A., Platais, I., Gilliland,
modelling of the early martian climate under epoch of widespread fluvial activity on early R.L., Latham, D.W., and Mathieu, R.D., 2015,
a denser CO atmosphere: Temperatures and Mars: 2. Increased runoff and paleolake A spin-down clock for cool stars from
2
CO ice clouds: Icarus, v. 222, p. 81–99, development: Journal of Geophysical observations of a 2.5-billion-year-old cluster:
2
https://doi.org/10.1016/j.icarus.2012.10.019. Research, v. 110, E12S15, https://doi.org/ Nature, v. 517, p. 589–591, https://doi.org/
Gallet, F., and Bouvier, J., 2015, Improved 10.1029/2005JE002460. 10.1038/nature14118.
angular momentum evolution model for Jakosky, B.M., and Carr, M.H., 1985, Possible Minton, D.A., and Malhotra, R., 2007, Assessing
solar-like stars II. Exploring the mass precipitation of ice at low latitudes of Mars the massive young Sun hypothesis to solve the
dependence: Astronomy & Astrophysics, during periods of high obliquity: Nature, v. 315, warm young Earth puzzle: The Astrophysical
v. 577, A98, https://doi.org/10.1051/0004-6361/ p. 559–561, https://doi.org/10.1038/315559a0. Journal, v. 660, p. 1700–1706, https://doi.org/
201525660. Kasting, J.F., 1991, CO condensation and the 10.1086/514331.
2
Goudge, T.A., Fassett, C.I., Head, J.W., Mustard, climate of early Mars: Icarus, v. 94, p. 1–13, Noffke, N., 2008, Turbulent lifestyle: Microbial
J.F., and Aureli, K.L., 2016, Insights into https://doi.org/10.1016/0019-1035(91)90137-I. mats on Earth’s sandy beaches—Today and
surface runoff on early Mars from paleolake Kasting, J.F., 2014, Atmospheric composition of 3 billion years ago: GSA Today, v. 18, no. 10,
basin morphology and stratigraphy: Geology, Hadean–early Archean Earth: The importance p. 4–9, https://doi.org/10.1130/GSATG7A.1.
v. 44, no. 6, p. 419–422, https://doi.org/ of CO, in Shaw, G.H., ed., Earth’s Early Ody, A., Poulet, F., Bibring, J.-P., Loizeau, D.,
10.1130/G37734.1. Atmosphere and Surface Environment: Carter, J., Gondet, B., and Langevin, Y., 2013,
Gough, D.O., 1981, Solar interior structure and Geological Society of America Special Paper Global investigation of olivine on Mars:
luminosity variations: Solar Physics, v. 74, 504, p. 19–28, https://doi.org/10.1130/ Insights into crust and mantle compositions:
p. 21–34, https://doi.org/10.1007/BF00151270. 2014.2504(04). Journal of Geophysical Research, Planets,
Grotzinger, J.P., and Knoll, A.H., 1999, Stromato- Kite, E.S., Williams, J.-P., Lucas, A., and v. 118, p. 234–262, https://doi.org/10.1029/
lites in Precambrian carbonates: Evolutionary Aharonson, O., 2014, Low palaeopressure of 2012JE004149.
mileposts or environmental dipsticks?: Annual the martian atmosphere estimated from the Ojakangas, R.W., Srinivasan, R., Hegde, V.S.,
Review of Earth and Planetary Sciences, v. 27, size distribution of ancient craters: Nature Chandrakant, S.M., and Srikantia, S.V., 2014,
p. 313–358, https://doi.org/10.1146/annurev Geoscience, v. 7, no. 5, p. 335–339, https:// The Talya Conglomerate: An Archean (~2.7
.earth.27.1.313. doi.org/10.1038/ngeo2137. Ga) glaciomarine formation, western Dharwar
Haqq-Misra, J.D., Domagal-Goldman, S.D., Koeppen, W.C., and Hamilton, V.E., 2008, craton, southern India: Current Science,
Kasting, P.J., and Kasting, J.F., 2008, A revised, Global distribution, composition, and v. 106, p. 387–396.
hazy methane greenhouse for the Archean abundance of olivine on the surface of Mars Oze, C., and Sharma, M., 2005, Have olivine,
Earth: Astrobiology, v. 8, no. 6, p. 1127–1137, from thermal infrared data: Journal of will gas: Serpentinization and the abiogenic
https://doi.org/10.1089/ast.2007.0197. Geophysical Research, v. 113, E05001, production of methane on Mars: Geophysical
Hartman, J.D., Gaudi, B.S., Pinsonneault, M.H., https://doi.org/10.1029/2007JE002984. Research Letters, v. 32, L10203, https://
Stanek, K.Z., Holman, M.J., McLeod, B.A., Kvenvolden, K.A., 1993, A primer on gas doi.org/10.1029/2005GL022691.
Meibom, S., Barranco, J.A., and Kalirai, J.S., hydrates, in Howell, D.G., ed., The Future Oze, C., and Sharma, M., 2007, Serpentinization
2009, Deep MMT transit survey of the open of Energy Gases: U.S. Geological Survey and the inorganic synthesis of H in planetary
2
cluster M37. III. Stellar rotation at 550 Myr: Professional Paper 1570, p. 279–291. surfaces: Icarus, v. 186, p. 557–561, https://
The Astrophysical Journal, v. 691, p. 342–364, Laskar, J., Joutel, F., and Robutel, P., 1993, doi.org/10.1016/j.icarus.2006.09.012.
https://doi.org/10.1088/0004-637X/691/1/342. Stabilization of the Earth’s obliquity by the Palumbo, A.M., Head, J.W., and Wordsworth,
Haxton, W.C., Robertson, R.G.H., and Serenelli, Moon: Nature, v. 361, p. 615–617, https:// R.D., 2018, Late Noachian Icy Highlands
A.M., 2013, Solar neutrinos: Status and doi.org/10.1038/361615a0. climate model: Exploring the possibility of
www.geosociety.org/gsatoday 9