Page 18 - i1052-5173-30-6
P. 18
11 to 20 most abundant elements in Earth's crust
21 to 40 most abundant elements in Earth's crust
nd most abundant elements in Earth's crust
th
th
Zr
th
Elements that are thought to make up most of the
(No ionization)
st
Earth's core (Fe>Ni>Co), along with possibly S or O
Li
41 to 92
st
recognized from Middle Ages to 1862;
2
Lu
He
Helium
Elements that make natural mineral alloys with Fe
recognized after 1963.)
m=4.0026
Elements that make natural mineral alloys with Cu
(
r=1.2
–
Elements that make natural mineral alloys with Os
Cations that form simple fluoride minerals Elements that occur as native minerals, recognized in antiquity Fe 10 most abundant elements in Earth's crust H Hydrogen 1 Noble Gases
Anions
as hydride
m=1.0079
3 4
Elements that make natural mineral alloys with Au
GSA 2020 ANNUAL MEETING Cations that form simple oxide minerals Elements that make natural mineral alloys with Pt = – 2 with full outer electron shells + r=2.08 Ne 10
1 2 3
Cations that form simple bromide or
Keep the Meeting Safe and Inclusive Ions least depleted from mantle in formation of crust Cations that form simple sulfide minerals 4 most abundant constituents 1 with incomplete Anions that commonly coordinate with H 8 F Fluorine 9 m=20.180
r
Anions
Neon
z /
(e.g., as CH , NH , H S, H O, etc.)
–
2
iodide minerals
Cations that form oxysalt minerals
2–
2
(e.g., S 6+ in sulfates, As 5+ in arsenates)
r=1.5
7 O
3
as fluoride
relative to the composition of the solar system
4
in atmosphere
3– Also see
Ions that enter early-forming phases in igneous rocks
Oxygen as oxide
Inset 9.
r=1.36
+
shells
6
Reduced nitrogen
4–
th
2+
th
r=1.40
GSA is committed to providing a safe, inclusive, and profes- RESPECTFUL INCLUSIVE Ions enriched in CAIs (Ca-Al-rich inclusions in meteorites) Anions that form minerals with K and Na 4+ + , and Zr 4+ 5 to 8 most abundant H 2 outer electron C Reduced carbon N m=14.007 m=15.999 m=18.998 Anions with which hard cations preferentially coordinate 20 21 22
18
sional environment for all of our events, including meetings, SCIENTIFIC EVENTS (RISE) Ions commonly concentrated in residual soils and residual Anions that form minerals with Mg 3+ , Ti Gases Molecular 8 m=12.011 r=1.71 + 19 Ar
hydrogen
(as NH 4 )
Argon
Most natural occurrences of carbides and
field trips, short courses, mentorships, and other GSA-supported GSA established RISE in 2016. Under this sediments. Small symbol ( ) indicates less certainty. Anions that form minerals with Al 4+ 7 8 O 1– r=2.60 16 17 18 – 17 m=39.948
Ions that enter later phases in igneous rocks because of
14 15
programs. Maintaining safe, inclusive events is critical to GSA’s program, GSA uses conspicuous posters to to enter into and/or stay in O 2- -bearing solids Ions concentrated in deep-sea ferromanganese nodules Anions that form minerals with Si + 6 N 2 O as in nitrides are in meteorites or mantle phases. 2– 16 Cl Chlorine r=1.8
2
success because it promotes full participation and a sense of Outline solid for naturally occurring elements or ions; Ions that tend relative to seawater Anions that form minerals with Cu + Non- C Molecular Molecular atmospheric 12 13 14 3– 15 S as chloride
remind meeting participants of our Events
m=32.066 m=35.453
OH 0 , HO 2 ,
Atomic Number
4–
nd most abundant
belonging, which in turn fosters open dialogue, networking, dashed for ones that rarely or never occur in nature. their large size (mostly "large-ion lithophiles") Anions that form minerals with Ag + metals Diamond nitrogen oxygen and H 2 O 2 Si 14 P Phosphorus Sulfur as sulfide r=1.81 Intermediate 36 38 40
Code of Conduct and whom to call to report
(number of protons)
as phosphide
and the productive exchange of scientific ideas. concerns. GSA takes all concerns seriously 8 most abundant solutes dissolved in seawater 3 – Anions that form minerals with Au & graphite Silicon as silicide m=30.974 r=1.84 35 37 Kr 36
17 to 22
r=0.77
Ionic Radius (r) (Å)
th
36
r=2.12
9 to 16 most abundant
3+ and has established procedures to ensure that
Krypton
54
r=2.71
Symbol
Ge
Most known natural occurrences of
for elemental forms)
EVENTS CODE OF CONDUCT appropriate follow-up occu (or elemental radius Most abundant solute in average river water (HCO ) Metals Also see Inset 9. 16 m=28.086 32 33 34 36 Br – 35 m=83.80
th
Actiniumrs. Typically, GSA’s ethics & compli-
th
GSA’s Events Code of Conduct provides examples of acceptable (see scale at far right) m=72.59 Most abundant (bold) 2 to 8 most abundant solutes in average river water 14 S phosphides and silicides are in metorites Se 2– 34 Bromine r=1.9
and cosmic dust.
ance officer has an on-site RISE office at the annual meeting.
Micronutrient solutes on land
th
m=79.904
(smaller print where
and unacceptable conduct for all of our events, including our Element Name r=1.05 Radioactive (italicized) Solutes that can be limiting nutrients in the growth of bacteria 13 Si Sulfur 3– 33 Selenium as bromide 78 80 82
We also have trained dozens of GSA members and staff as RISE
nd
Al
as selenide
As
r=1.95
expectation that all GSA events will be free of discrimination, Atomic Mass 2 3 4 very scarce) late, or not at all, and instead to enter or remain aqueous solution. Solutes that can be limiting nutrients in the oceans Elemental Forms Aluminum r=1.34 Arsenic as arsenide m=78.96 (7+ r=0.39) Anions with which soft cations preferentially coordinate 83 84 86
liaisons. These individuals attend all major GSA events and have
Ions essential to the nutrition of at least some vertebrates
Silicon
"Hard" or "Type A" Cations
54
m=74.922
r=1.98
Naturally
(uncharged)
β-
z = ionic charge ÷
MAP AND CHART SERIES MCH092RV2 harassment, and bullying. The code of conduct applies to everyone been coached on what to do if they receive a complaint or witness Ions that tend to only enter O 2- -bearing solids Macronutrient solutes on land other than noble gases r=1.43 34 r=2.22 74 76 77 79 81 (82) Xe m=131.29
Xenon
occurring
ionic radius
(All electrons removed from outer shell)
β+
who attends GSA events, including, but not limited to, registrants,
a potential code of conduct violation.
EC,
doi:10.1130/2015.MCH092RV2
53
78 80 82
isotopes
= ionic potential
r=2.1
–
r
(Thus a noble-gas-like configuration
or charge density
52
I
Radioactive
75
α
The Geological Society of America, Inc.
Iodine as iodide
Principal elements in iron
/ = 16
Se
decay pathways
z
Published by Cations that guests, volunteers, exhibitors, staff, and service providers. other ethics initiatives, go to https://www.geosociety.org/ethics. in ("essential minerals") coordinate with O (± OH ) in solution meteorites (Fe>>Ni>>Co) and, 28 29 30 (Atomic masses 33 Selenium Sb 3– 51 Te 2– Tellurium m=126.904 124 126 128
r
3300 Penrose Place • P.O. Box 9140
As
To read the Events Code of Conduct and learn about GSA’s
Attendees are required to read and sign the Events Code of
© 2015 The Geological Society of America, Inc. All rights reserved.
129 130 131
Boulder, Colorado, 80301-9140, USA
Cations that
r=2.16
of the outer shell)
with S or O, presumably domi-
as telluride
–
34
Arsenic
132 134 136
Conduct before registering for GSA meetings.
m=127.60
r=1.6
and isotopic
(7+ r=0.50)
2–
6+
Zn
r=1.48
Antimony
33 Se
Commonly coordinate with O of
information
86
r=2.21
as antimonide
coordinate with H O
Printed in the USA
Ni
are omitted to
carboxyl groups of organic ligands
3– ) selenate (SeO 4
Zinc
129
Co
4+
26
(128) (130)
Copper
r=2.45
124 125 126
Fe
Radon
arsenate (AsO 4
24
2– or SO
6+
r=1.25 r=1.24 r=1.28
Cations that coordinate with
See also Insets 1 to 5 and 7.
128 130
2– )
(or CO in solution 4 2 2– ) Coordinate F>O>N=Cl>Br>I>S Permanganate Fe as ferrate or 2– ) S Sulfur 16 As 5+ r=0.47 51 Te r=0.42 2– ) 52 nant elements in Earth's core 26 27 Nickel Cu r=1.39 conserve space) 51 52 m=121.760 120 122 123 (124) 127 85 Rn (222)
6+
as sulfite (SO 3
3
Cobalt
Cr
r=0.37
At
121 123
perferrate (FeO 4
Iron
tellurate
(MnO 4 ) is a
5+
r=0.25
–
Te
, etc.)
hard cation
Sb
2–
H + 1 Cations that Cations that O 2– in solution (e.g., as Chromate shown to left z / = 8 Sn 4+ 50 Sb antimonate r=0.56 34 Chromium r=1.26 48 49 50 Antimony Tellurium Bi 2–,3– 83 = – 1 2 Astatine 218 219
r
220 222
, SO
r=1.27
r=0.62
Sn
Stannic tin
4
3–
4+
–
4
2– ) is a
Hydrogen ion coordinate – NO , PO (CrO 4 z r r=0.71 3+ 33 Se Selenium 2– ) 46 47 Cd In Tin r=1.61 r=1.7 Bismuth as z r /
3
hard cation
Intermediate Cations
bismuthide
32
m=1.0079 with OH (or coordinate with OH 6 N Nitrogen 7 – ) See also Intermediate Cations 3+ 28 Cu 2+ 29 / = 4 Ga 3+ 31 Ge m=72.61 as in arsenites as selenite(SeO 3 44 45 Pd Ag Cadmium Indium m=208.980 215 218 219
4+
–
shown to left
r=1.56 r=1.66 r=1.58
5+
As
m=78.96
or O in solution
H O) in
-5
Germanium ion
Arsenic,
2–
Inset 9.
r=10
r=0.50
4+
Rh
Silver
2
30
(Some electrons remain in
r=1.37 r=1.44
nic charge
Coordination with S or O likely
Coordination with S or O likely
Coordination with S or O likely
Coordination with S or O likely
Ru
2+
solution
e electrons rema
e electrons rema
Noble Gases z z / = 4 Li + 1 2 3 3 Be 2+ 4 B Boron – ) 5 C bicarbonate (HCO 3 ) - 2- as nitrate (NO 3 z r = 32 = ionic charge ÷ (Some electrons remain in outer shell) 26 Co 3+ 27 Ni r=0.73 Cupric copper 29 m=65.39 Gallium ion (2+ r=0.93) m=74.922 74 76 77 52 I as iodate (IO 3 ) Ruthenium Rhodium Palladium 80 81 82 83 z / r = – 1 The only bismuthide
r=0.53
as borate (B(OH) 3 Carbon, as CO 2 ,
& carbonate (CO 3 ) m=14.007
3+
m=69.723
Zn
r=0.69
ionic radius
nic radius
minerals are of
Nickel ion
78 80 82
53
Pd, Ag, Pt, Au, and Pb
r=1.34
5+
r=0.11
3+
Zinc ion
r=0.69
Fe
Fe
Cobaltic cobalt
r=0.62
r=1.34
75
m=12.011
(No ionization)
4+
25
25
Iodine
70 72
Bi
–
r
3,4+
3 3,4+
m=10.811
Beryllium ion
(1+ r=1.13)
or B(OH) 4
+
Pb
Te
r=0.74
Mn
Mn
7+
/ = 2
24 Mn
Sb 51
3+
Ferric ir
24
r=0.63
15
Tl
Bismuth
r=0.
3+
3+
Cuprous copper
as in tellurites
m=6.941
r=0.31
Cr
Cr
64 66
Lead
Cr
Cr
r=0.44
Manganese ion
Manganese ion
Hg
m=63.546
Antimony ion,
r=0.64
2+
as per- r-
Nickel ion
Iodine is shown twice
He Helium 2 r Lithium ion m=9.012 r=0.20 12 13 14 14 15 1 5 S 6+ 16 Cl chlor- MAP AND CHART 92 Mn r=0 Ferric iron Co 2+ 27 Ni 2+ 28 Cu r=0.96 67 68 70 69 71 49 73 74 76 50 as in antimonites Tellurium ion, m=126.904 76 77 78 79 Mercury Thallium r=1.75 r=1.82
m=58.693
Au
Chromic
Chromic
r
r=0.60
5+
4+ r=0.53
4+ r=0.53
120 122 123 as a solute in seawater
10 11
r=0.89
Ch
Sn
lor-
23
23
Sulfur as
1,3+
chromium
chromium
14 P
Pt
m=51.996
r
4+
4+
nate
r= 0.64
3+ r= 0.64
2– )
4+
Si
m=4.0026 9 10 NEW VERSION 3– sulfate (SO 4 (ClO 4 ) ) – – 4 = 16 = 16 V V V V Vanadium ion m=51.996 3+ r= 0.64 Fe 2+ 26 Cobaltous cobalt r=0.72 63 65 2+ 48 In m=118.710 m=121.760 m=127.60 because it speciates 75 Ir Platinum r=1.44 r=1.60 r=1.71
Gold
m=32.066
both as I – (to right)
Fe
Stannous tin
Phosphorus as
r
r=0.90
m=58.933
r=0.69
r=0.69
Vanadium ion
10
58 60
25
25
r=0
Indium ion
Os
r= =
2+
2+
2+
–
r
2+
2+
4– )
r=1.2 6 7 2+ 12 Al 3+ 13 as silicate (SiO 4 phosphate (PO 4 r=0.29 0.27 z / r z / / r z / r z / Ti 3+ 22 r=0.61 23 50 52 53 54 Mn 2+ 25 m=55.845 r=0.74 61 62 64 Ag + 47 Cd m=114.818 r=1.12 124 125 126 and IO 3 (here). 73 r=1.37 r=1.35 r=1.35 r=1.38
r=0.61
54 Mn
54 Mn
Mn
Mn
Re
Iridium
54 Mn
50 52 53 54 Mn
22
22
3+
3+
3+
r=0
2– )
22
22
22
Ferrous iron
128 130
Cadmium ion
r
.27
m=30.974
12
3+ r=0.81
and HPO 4
Osmium
0
23
Ti
Ti
Ta
m=28.086
Aluminum ion as
2015 MCH092RV2
Manganous Mn
or Si(OH) 4
Manganous Mn
59
3+
84
3+
24 m=54.938
Titanium ion
117 118 119
Silver ion
tanium
tanium
tanium
tanium
m=26.982
r=0.97
V Vanadous
V Vanadous
V Vanadous
3 4 Na + 11 Mg esium ion Al 3+ or Al(OH) n 3–n Boulder, Colorado 80301-9140 r=0.41 r=0.34 32 33 34 36 Mn 7+ + + + + Ti Ti Ti Titanium ion V m=50.942 Cr 2+ 24 m=54.938 r=0.76 2+ 45 Pd 2+ 46 m=107.868 m=112.411 1+ r=1.32 112 114 115 116 121 123 83 Po Polonium z / r = Tantalum Rhenium
Magnesium ion
3300 Penrose Place
r=0 An Earth Scientist’s
r=0.80
r=0.80
m=24.305
r=0.8
24.30
7 7 7 7 7 7 7
54 56 57 58
r=0.75
r=0.75
120 122 124
2+
2+
Ti 22 m m m=50.942
vanadium
vanadium
3+
=50.942
=50.942
P.O. Box 9140
r=1.46
24.
Mn
Cr
Mn
Mn
Palladium ion
Cr
31
r
r
55
8
22
22
Ti 22
=0.6
=0.6
2+
2+
10 Sodium ion r=0.65 r=0.50 MAP AND CHART SERIES MCH092RV2 2015 5+ Cr 6+ 24 Mn Periodic Table of the Elements 55 3,4+ 44 Rh Rhodium ion m=106.42 r=1.26 106 108 110 113 115 2+ 82 Bi Inset 4: Solubility of oxide minerals of hard cations
Chromous
Chromous
m=22.990
r=0.74
r=0.74
28 29 30
111 112 113
Bismuth ion
r=0
chromium
m=101.07 m=102.906
chromium
chromium
as per-
as per-
r
r=0.90
=0.90
43
chro
43 Ru
manga-
ng
ng
r=0
Ne Neon z / = 1 r=0.95 An Earth Scientist’s Periodic Table of 23 Chromium as 2– ) manga- – – Ti Titanium ion r=0.90 43 Ruthenium ion r=0.86 114 116 + 81 Pb m=208.980 An Earth Scientist's Periodic Table of the Elements and Their Ions 4+ N 5+
27
V
r
Titanium ion
Plumbous lead
50 51
50 51
r=1.20
nate
tanium
nat
nate
22
42 Tc
Tl
4+
m=20.180 r 24 25 26 Fe 3+ 26 the Elements and Their Ions e.g., as vanadate chromate (CrO 4 (MnO 4 ) ) r=0.90 and Their Ions 2+ 42 Tc Technetium 3+ r=0.69 r=0.86 102 104 105 107 109 Hg 80 Thallous thallium m=207.2 210 211 212 3+ C
Vanadium ion
21 Ti
2+
2+
25
(MnO
(MnO
r=0.90
r=0.9
Technetium
(MnO 4 4
+
m=51.996
Mo
41 Mo
Mo
Mo
41
r=1.20
r
Very limite
by L. Bruce Railsback
42
ry ry
Titanic titanium
Department of Geology, University of Georgia
r= r= r= r
Fe 2+
r=1.5 Where Fe 2+ 23 Fe 2+ 2+ 20 AN EARTH SCIENTIST’S PERIODIC TABLE OF THE ELEMENTS AND THEIR IONS Sc 3+ coordinate with H 2 O Athens, Georgia, 30602-2501, USA m=50.942 r=0.52 0.46 by L. Bruce Railsback, 2015 4+ 42 Very limited 4+ r=0.67 103 106 108 110 Au + 79 Mercurous ion m=204.383 204 206 207 209 210 211 214 215 L. Bruce Railsback, Department of Geology, University of Georgia, Athens, Georgia, 30602-2501, U.S.A. For more resources, see the Earth S
4+
natural
4+
m=47.867
natural
r=1.40
natu
216 218
+
Mo
4+
Mo
4+
4+
2+
Mo
Mo
occurrenc
occurrence
0.46
Ca
Ca
–7.4
m=200.59
Scandium ion
Nb
"Hard" or "Type A" Cations
Molybdenum ion
Nb
r=0.68
96 98 99
78
Nb
Nb
Molybdenum ion
Li 4.4
Inset 3: Melting T(K) of oxides of hard cations
2+
on Earth
(All electrons removed from outer shell)
Cations that
+
19
m=95.94
54
m=95.94
(Thus a noble-gas-like configuration
z z z z
Bromellite
(or CO 3 2– or SO 4 2– )
Gold ion
of the outer shell)
50 52
in solution
hard cations K
/ /
H +
83
20 21 22 and Fe 3+ would Potassium ion Ca alcium io m=44.956 1 Cations that 4 B Boron Coordinate F>O>N=Cl>Br>I>S 7 See also Inset 9. r=0.59 9 50 52 53 54 An Earth Scientist’s Periodic Table of the Elements on Earth 100 101 Ir 4+ 77 Pt Platinum ion m=196.967 r=1.19 203 205 206 208 210 211 212 214 215 An earlier version of this table was published as Figure 1 of L.B. Railsback, 2003, An Earth Scientist's Periodic Table of the Elements and Their Ions: Geo
Calcium ion
Commonly coordinate with O of
alcium io
r=0.81
/ / / / / r r
fall if they were
102 104
carboxyl groups of organic ligands
99
/ r =
99
r=0.68
r=0.68
Hydrogen ion
r =
m=40.078
5+
212 214
50 51
51
See also Insets 1 to 5 and 7.
41
and Their Ions is a periodic table designed to
m=40.0
coordinate
41
40.0
m=1.0079
r=0
40.0
r=10 -5
Cations that coordinate with
42
with OH – (or
42
46 47 48
92.906 10
Cations that
42
42
H 2 O) in
–3.9
O 2– in solution (e.g., as
8
r
r=1.37
8
82 Bi
2+
207 208 210
(100)
coordinate with OH –
solution
92 94 95 96
(100
NO 3 – , PO 4 3– , SO 4 2– , etc.)
z / r = 4
76
92 94 95 96
1 2 3
5+
or O 2– in solution
6+
6+
3 Be 2+
3+
5 C 4+
z / r = 2
+
as borate (B(OH) 3 Carbon, as CO 2 , - N 5+
4+
r= 0.99
Li
6
Iridium ion
4+
Lithium ion
–8.1
r=0.96
Nitrogen
Beryllium ion
41
41
41
41 Mo
or B(OH) 4 – )
m=9.012
= =
m=6.941
200 201
r= r= r 0. 0. 0. 0. 0.
bicarbonate (HCO 3 ) as nitrate (NO 3 – )
3+
3+
r=0.31
3+
2- ) m=14.007
r=0.74
49 50
r=0.60
m=12.011
r=0.20
r=0.11
97 98 100
97 98 100
5+
ionic radius ÷
r=0.
12 13 14
6 7
202 204 206
14 15
Molybdenum
Nb
Nb
Nb
10 11
Nb
Ar Argon 18 m=39.098 40 42 43 45 + m=22.990 11 Mg 12 9 2+ Al 3+ m=10.811 13 27 & carbonate (CO 3 15 0 14 P 5+ Phosphorus as 51 S 6+ sulfate (SO 4 2– ) r=0.29 z r = 32 = 16 Cl 7+ chlor- as per- (ClO 4 – ) 0.27 ionic charge ÷nic chargenic chargenic char nic radius z / r = 16 z / z / z r / r / = 16 m=92.906 6 10 Mo lybdenum contextualize trends in geochemistry, mineralogy, Re 4+ 75 Os Osmium ion m=192.217 m=195.078 ? (3+ r=0.85) 196 198 199 Tl 3+ 81 Pb Plum
40 Nb $ $
r=1.33
Molybdenu
Si 4+
aqueous chemistry, and other natural sciences.
4+
4+
Na
Sulfur as
(48)
as silicate (SiO 4 4– )
r=0.66
Aluminum ion as
r=0.84
Sodium ion
molybdate
m=190.23
as molybdat
as molybdate e
Magnesium ion
m=24.305
nate
Al 3+ or Al(OH) n 3–n
74
phosphate (PO 4 3–
or Si(OH) 4
r=0.95
Re
m=28.086
r=0.65
z / r = 1
and HPO 4 2– )
m=32.066
Re
Re
m=26.982
r=0.50
r=0.41 m=30.974
r=0.34
r=
Niobium (or
Niobium (or
Niobium (or
4+
4+
First published as an insert in the September
94
=95.94
24 25 26
23
Zr
Where Fe 2+
31
Rhenium ion
m=39.948 40 42 ? 3+ hard cations m=39.098 19 Ca 2+ Calcium ion 20 ? Sc 3+ Scandium ion 45 (48) 21 Ti 4+ Titanic titanium r=0.68 22 V 5+ e.g., as vanadate 4+ 34 36 24 Mn 7+ as per- (MnO 4 – ) 0.46 nate r= Columbium) ion m=95.94 2003 issue of Geology, this version is updated 74 m=186.207 r=0.69 190 192 193 197 2+ 80 Thallic thallium + Be 723 216 500 6+ Periclase 4+ V 5+ Cr
28 29 30
32 33
194 195
Rhenium io
Fe 2+
+
and Fe 3+ would
Fe 3+
44 46 48
fall if they were K
m=9
Cr 6+
23
lumbium) ion
lumbium) io
lumbium) io
W W
r=0.95
Potassium ion
Vanadium ion
Chromium as
chromate (CrO 4 2– ) manga-
m=47.867
m=40.078
m=44.956
44
r=0.81
m=50.942
r=1.33
Tungsten (Wolfram)
Li
r= 0.99
m=51.996
Zirconium ion
r=0.52
r=0.62 2
–7.6
=0.62
r=0.59
40 42 43
46 47 48
50 51
44 46 48
49 50
39 40 41
50 52 53 54
r=1.8 39 40 41 Sr 2+ 38 Y Yttrium ion 84 86 87 88 2+ 38 Y 3+ m=88.906 Zr 4+ m=91.224 m=91.224 r=0.70 92 94 95 97 and supersized! Tungsten (Wolfram) m=186. 184 186 191 193 196 198 2 = 1 = 1 Hg Mercuric ion = 4 Inset 2: Hardness of oxide minerals of hard cations 1700 2681 4+ P 5+ S 290 2+ Sc 3+ Ti –9.7 Shcherbinaite
r=1.10
r
41
r=0.65
Rb +
40 Nb 5+
37 Sr 2+
2+
/ / z / z / / r / r /
39 39
Mo 6+
42
94 95 97
97
/ z r =
Rubidium ion
Zirconium ion
r=0
r=0
=0.70
Molybdenum
Yttrium ion
ion
Niobium (or
ion
Strontium ion
z r = 8 8
m=183.84
m=183.84
m=87.62
as molybdate
95
Columbium) ion
m=85.468
m=95.94
r
m=92.906
r=0.80
r=1.48
r=0.93
r=1.13
r=0.62
r=0.80
r=0.70
5+
92 94 95 97
90 91
Ca
85 87
(96)
89
93
96 98 100
100
92 94 96 ?
z / r
r=0.64
3+
55 Ba 56 La & 57- Hf 4+
+
Re 7+ 75
73
W 6+
72 Ta 5+
75
75
Cs +
75
74
m=132.905 m=137.327 REEs 71
Hafnium ion
Strontium ion
Rhenium ionn
Tantalum ion
Strontium io
Barium ion
Rhenium io
r=0
Cesium ion
36 38 40 Rb + 37 Sr r=1.13 m=88.906 r=1.18 170 Yb 178 179 180 90 as tantalate (231) r=0.73 91 U 6+ Tungsten (Wolfram) 92 * m=186.20786.207 93 Pu Pu Very limitedry limited 94 93 (96) 92 96 98 100 Re 7+ MCH092RV2, 1 folded sheet (36" × 76"), 7 p. text r=0.64 185 187 187 188 189 "Soft" ("Type B") Cations z r / 2+ B 3+ C 4+ N Na + Mg 2+ Al 3+ Si 855 K 14.0 Lime 1.4 Rutile 5+ Mo 6+
m=178.49
190 192
=
as tungstate
umably
presumably
r
7+
r=1.35
m=180.948
96
m=183.84
r=1.69
m=87.62
as rheniate
r=0.81
eniate
1996
r=0.68
z / r
See below
130 132
.56
r=0.56
134 135136
174 176 177
96)
(96)
180 182 183
Re
180 181
133
93
96
90 91
137 138
z / r
DOI:10.1130/2015.MCH092RV2
185 187187
184 186
m
74
180 182 183
2345
180 182 183
74
r=0.93 3+
89 Th 4+
Pa 5+
87 Ra 2+
Fr +
Rubidium ion
$10.00
93
Np
Plutonium 94
88 Ac
Actinium ion
6+
Thorium ion
Neptunium
Neptunium
Plutonium
Protactinium ion
Rhenium ion
Francium ion
Rhenium ion
Radium ion
Uranium
m=227.03 ? m=232.038
18
36
as uranyl (UO 2 2+ )
(223)
mited
(226)
m=238.029
Coordinate I>Br>S>Cl=N>O>F
natural al
r=0.95
Very limited Ve natural
natural
r=1.76
occurrence
r=1.40
(+4 r=0.98)
(+3 r=1.14)
occurrence
101: Mendelevium
on Earth
r=0.7
on Earth
227 228 230
very rare
223 224
W
227 228
234 235 238
(<30 g in crust)
184 186
239
presumably
237 ?
231 234
226 228
Inset 9:
(Wolfram)
*For the sake of simplicity,
/
the 235 U- 207 Pb and
Kr Krypton m=85.468 r 84 86 223 89 232 Th- 208 Pb series are omitted. 232 * z / r = 4 231 234 92 94 96 ? 5+ 73 Tungsten (Wolfram) presumably 184 186 Elements 95 and beyond do not occur naturally: (Many electrons remain in outer shell) Inset 9: Li + Be 9 Chrysoberyl H=6 5+ S 6+ 1193 3125 V 5+ Cr 6+ 3+ Zr 4+ Nb Molybdite
z r = 8
r=1.48
as rheniate
102: Nobelium
as rheniate
z / r = 1
Elem
72 Ta
95: Americium
gstate
The many
The many
m=186.207
as tungstate
4+
92
=183.84
Tantalum ion
z / r = 2
4+
98 Californium 104: Rutherfordium
m=83.80 87 88 La & 57- Hf as tantalate m=183.84 m=186.207 U U 4+ 92 96: Curium 103: Lawrencium z r / = 4 Commonly coordinate with C of valence states Bromellite 8.5 3+ Si 4+ P 3+ Ti 4+ 943 + Sr 2+ Y Baddeleyite
valence states
= ionic charge ÷
ionic radius
r=0.56
© 2015 The Geological Society of America, Inc. Printed in the USA.
r=0.56
97:Berkelium
3+
4.3
r=0
Hafnium ion
r=0.68
=0.68
of nitrogen
Uranium ion
r
r=1.9 85 87 2+ 56 La m=178.49 m=180.948 180 182 183 185 187 Uranium ion 99: Einsteinium 105: Hahnium organic ligands, as in methylmercury of nitrogen + Mg 2+ Spinel Al 9 Quartz + Ca 2+ Sc 2103 1000 Rb 5+ W 6+
m=1
m m=178.4
REEs 71
REEs 71
185 187
7
r=0.97
r=0.97
56
2+
182 183
r=0.73
r=0
and carbon
and carbon
28.9
r
55 Ba
94
r=0.81
78 80 82 + 55 Ba r=0.81 184 186 93 Pu 94 100: Fermium 3+ calculated assuming Na Periclase 5.5-6 7.5-8 Corundum 6+ K 3200 5+ Mo 6+ 4+ Ta
184 186
r=0
r
calculated assuming
Pu
Barium ion
Barium ion
m=132.905 m=137.327
93
3+
83 84 86 Cs Cesium ion r=1.35 See below 174 176 177 180 181 6+ 92 Np Neptunium Very limited Yb 70 Lu 71 H is 1+ and O is 2-. H=8 4+ V 5+ Cr 4+ Nb 1074 2+ La 3+ Hf Tantite
Plutonium
Plutonium
H is 1+ and O is 2-.
92 Np
limited
6+
Lutetium ion
Neptunium
Ytterbium ion
Ti
3-3.5
natural
3+
>9 *
3123
Example
Xe Xenon 54 r=1.69 130 132 170 Yb 178 179 180 Pa 5+ 91 U Uranium 2+ ) Very limited occurrence Rare earth elements (REEs) Er 68 Tm 69 m=173.04 m=174.967 Valence Example 2+ Perovskite (Ru=6-6.5) Shcherbinaite + Sr 2+ Y 3+ Zr 1785 Ba 6.7 4+
gsaservice@geosociety.org
3+
90
natural
r=0.93
r=0.94
134 135 136
– (nitrate)
4+
Ca
m=227.03 m=232.038/store/
5.5
4+ NO (nitrogen dioxide)
state
m=131.29 BUY ONLINE } rock.geosociety.org Protactinium ion as uranyl (UO 2 occurrence on Earth (effectively "Hard" or "Type A" cations in their 3+ state) m=168.934 168 170 171 175 176 176 Hf 4+ CO (carbon dioxide) K + Lime 3.5 H=4 6.5 H=4 6+ Rb 2938 W 6+ Mineral Th Thorianite
Thulium ion
Th
(2+ r= 1.13)
m=238.029 toll-free 1.888.443.4472 | +1.303.357.1000, option 3
5+ NO
137 138
3
(231)
on Earth
89
Erbium ion
3+
Ho 67
239
r=2.1
Thorium ion
673
3+
Dy 66
r=0.7
2
3+
2
– (nitrite)
–9.7
2+ CO (carbon monoxide)
124 126 128 133 2+ 88 Ac Actinium ion ? r=0.95 (+4 r=0.98) 234 235 238 237 ? 3+ 3+ Dysprosium ion m=164.930 m=167.26 r=0.95 172 173 ? 3+ HOOCCOOH (oxalic acid) Srilankite 4+ Nb 5+ Mo 3-4 3+ Hf 4+ Ta 5+ 1745 Log of activity of cation species v. 4.8e 02 22 October 2012
r=0.96
3+ NO
2+ NO (nitric oxide)
2
in distilled water at 25 °C
Holmium ion
acetic acid, carbohydrates,
*
174 176
129 130 131
Eu 63
1+ N O (nitrous oxide)
87 Ra
Zr
+
Radium ion
132 134 136 18 GSA Today | June 2020 (226) r=1.18 (+3 r=1.14) 231 234 z r / = 8 m=151.964 Gd 3+ 64 Tb 65 m=162.50 r=0.97 162 164 166 169 0 graphite, diamond Other alkanes Mineral of Sr 2+ Y 3+ Baddeleyite Molybdite Cs + Ba 2+ La 3173 2058 2000 1500
6.5
2
0 N (nitrogen)
Fr
227 228 230
167 168 170
Europium ion
r=0.99
2– CH OH (methanol)
Terbium ion
Francium ion
2580
3– NH (ammonia)
2
86
2286
232 *
156 158
m=157.25
3
2500
3
3+
4– CH (methane) integer values
Rn Radon (223) r=1.40 227 228 231 234 61 Sm 62 r=1.03 Gadolinium ion m=158.925 160 161 162 165 of hard and soft cations 3– C H (ethane) yield non- one cation: Hardness 5+ W 6+ 1500 2000 2500 3000 Th 4+ 3000
r=1.00
4 (carbon dioxide)
r=1.76
2 6
from 4– to 2–.
r=1.02
7
3+ HOOCCOOH (oxalic acid)
Samarium ion
Quartz
(222) (<30 g in crust) 223 224 *For the sake of simplicity, Ce 4+ 58 3+ 60 Pm No natural m=150.36 151 153 63 152 154 155 159 163 164 Inset 8: Solubility of halides Villiaumite AgF 4+ CO 2 3 – (nitrate) Mineral of (Mohs La 3+ Hf 4+ Ta 7 See also Inset 6. 3493
very rare
226 228
2+ CO (carbon monoxide)
scale)
2+
4+ NO (nitrogen dioxide)
Promethium
156 157
the 235 U- 207 Pb and
acetic acid, carbohydrates,
r=1.04
5+ NO
223
Tantite
Eu
59
(NaF)
3+
– (nitrite)
Neodymium ion
Pr
m=144.24
(MgF 2 )
r
r=1.01
219 220 222 z / r = 232 Th- 208 Pb series are omitted. z / = 4 Cerium ion 58 Praseodymium ion Nd r=1.08 occurrence 144 147 148 Europium ion 158 160 Anion: Nonmineral Sellaite Halite 0 graphit 2 2e, diamond Other alkanes two cations H=6 4+
Mineral
5.5
2+ NO (nitric oxide)
3+ NO
2– CH OH (methanol)
149 150
r=1.12
on Earth
m=140.908
–
1+ N O (nitrous oxide)
Th
(NaCl)
oxides of hard (and intermediate) cations
Perovskite
F
152 154
3+
57
3
2 H (ethane)
yield non-
3+
2 (methane) integer values
r=1.09
1
0 N (nitrogen)
La Lanthanum ion Ce Cerium ion (4+ r=0.92) 142 143 144 (150) ? z/r = 2 Substitutes for Ca 2+ Inset 7: Conceptual model of the behavior of Cl – Chlorargyrite HgCl 2 MgCl 2 NaBr 3– C Shown above in the main table. *A non-rutile synthetic TiO 2 Thorianite 6
3– NH (ammonia) from 4– to 2–.
2 6
146 145
m=138.906 m=140.116
is the hardest known oxide
4– CH
(AgCl)
4
Shown above in the main table.
148 150 ?
3
r=1.11
N
MgBr 2
N 2 is the most abundant constituent
z / r =
Inset 1: Bulk modulus (K in GPa) ionic radius 2 Lantha- r=1.15 136 138 140 141 1600 Cassiterite 1903 4+ As 588 5+ Li H + Cations 1Å Br – Bromargyrite HgI 2 HgBr 2 MgI 2 1 NaI N 2 is the most abundant constituent
of the atmosphere; NO 2 , NO, N 2 O,
of the atmosphere; NO 2 , NO, N 2 O,
nides:
Inset 6: Melting and decomposition (d) temperatures
(AgBr)
and NH 3 are minor constituents.
and NH 3 are minor constituents.
of oxide minerals of hard cations
142
s
138 139
= ionic charge ÷
Sn
100
Iodargyrite
Nonmineral:
Ba
Solubility of Ag + ( )-, Hg 2+ ( )-,
Mineral of
10 -2
(AgI)
10 -4
3+
Tenorite
Mineral of
10 -6
As
Strong
210
4+
10 -8
one cation: two cations: 71 4+ 138 (K) of oxides of intermediate and soft cations 2+ Zincite 2000 3+ Argutite Arsenolite 2– High z/r I – Na + ( )-, and Mg 2+ ( )-bearing halides (mol/L)
1200
Ge
bonds, but
Cu
547
Ga
Perovskite
38
3+
1388
1719
O
Co
Quartz 2+ B 3+ C 3 Mn 3+ Hematite 1168 (d) Bunsenite Cuprite + Zn 2+ 2079 Romarchite Valentinite Intermediate cation-cation
3+
repulsion
Fe
(__MO minerals without OH or H O)
2242
Be
3+
+
Rb
2+
2
z/r
Li Bromellite 251 Chrysoberyl Si 4+ P 5+ Inset 5: Typical simple oxysalt minerals Paramont- Eskolaite 1353(d) 2+ 1838 2+ Co 2+ Ni 2+ 2+ Cu Ag + Monteponite 2185 3+ 1353(d) Sb Weak cation- Strong cation-
Sn
Low z/r
1509
928
2+
In
3+
oxygen bonds oxygen bonds
2228
Fe
Cd
Cr
240
2078
roseite
4+
Minerals with
Mn
1652
2603
>1773
3+
V
n
5+
Pd
2+
Al
N
38
Rh
ionic potential
3+
Manga-
nosite 1600
Bi
2+
254
(e.g., K + , Na + , Ba 2+ )
Hg
NaNO
3
Na + Mg 2+ Spinel Corundum Quartz 50 B 3+ C 4+ 3 (Natratine) cations of very low 2240 2400 4+ 2054 Wüstite 1373(d) 1023(d) ~473(d) 3+ 373(d) + Tl 852 + Massicot Bismite
198
Pb
Au
1098
Periclase 160 V 5+ Me (e.g., KNO 3 2000 Mo 1200 800 2+ 423(d) + Hg 2+ Tl 3+ 1170
2+
CO
1373(d)
Tugarinovite
(Niter)
4+
Pt
4+
Au
773(d)
(Sinhalite)
Perovskite Ti 216 MgAlBO 4 Calcite) 5+ S 6+ 4+ Re 4+ 1273 (d) 598(d) 400 no stable Montroydite 1107 Avicennite
Ir
oxide
2+
P
CaSO
4+
4
210
W
Si
K + Ca 115 Tausonite Rutile KAl Si O (Kspar) Na PO 4 (Anhydrite) 4 ~1773(d) 1173(d)
(Thenardite) Minerals
3
(Olympite)
Na SO
Lime
2
2 3 8
of low ionic
175 200 4+ Nb 5+ Al SiO (K-S-A) AlPO 4 with cations See also Inset 3.
5
2
3+ Zr "K-S-A" ZrSiO (Zircon) (Berlinite) potential
4
2+ Y 150 152* *Baddeleyite has indicates Minerals with cations of
(e.g., Al 3+ ) ionic potential
andalusite,
Rb + Sr 87 K s = 95 GPa but kyanite, low (e.g., K + ) to moderate
is not the most
stable ZrO 2 phase
& sillimanite.
100
tions; value shown
4+ at ambient condi-
3+ Hf 145 is for the latter.
La
2+
Cs + Ba 71