Page 8 - i1052-5173-27-10
P. 8
Basins: Proceedings of Lunar and Planetary Kring, D.A., and Boynton, W.V., 1992, Petrogenesis Christeson, G.L., Claeys, P., Cockell, C.S.,
Science, v. 12A, p. 37–57. of an augite-bearing melt rock in the Chicxulub Collins, G.S., Deutsch, A., Goldin, T.J., Goto,
Gulick, S.P.S., Barton, P.J., Christeson, G.L., structure and its relationship to K/T impact K., Grajeles-Nishimura, J.M., Grieve, R.A.F.,
Morgan, J.V., McDonald, M., Mendoza- spherules in Haiti: Nature, v. 358, p. 141–144, Gulick, S.P.S., Johnson, K.R., Kiessling, W.,
Cervantes, K., Pearson, Z.F., Surendra, A., doi:10.1038/358141a0. Koeberl, C., Kring, D.A., MacLeod, K.G.,
Urrutia-Fucugauchi, J., Vermeesch, P.M., and Matsui, T., Melosh, J., Montanari, A., Morgan,
Warner, M.R., 2008, Importance of pre-impact Kring, D.A., Hildebrand, A.R., and Boynton, W.V., J.V., Neal, C.R., Nichols, D.J., Norris, R.D.,
crustal structure for the asymmetry of the 1991, The petrology of an andesitic melt rock Pierazzo, E., Ravizza, G., Rebolledo-Vieyra, M.,
Chicxulub impact crater: Nature Geoscience, and a polymict breccia from the interior of the Reimold, W.U., Robin, E., Salge, T., Speijer,
v. 1, p. 131–135, doi:10.1038/ngeo103. Chicxulub structure, Yucatán, Mexico: Lunar R.P., Sweet, A.R., Urrutia-Fucugauchi, J., Vajda,
Gulick, S.P.S., Christeson, G.L., Barton, P.J., and Planetary Science XXII, p. 755–756. V., Whalen, M.T., and Willumsen, P., 2010, The
Grieve, R.A.F., Morgan, J.V., and Urrutia- Chicxulub asteroid impact and mass extinction at
Fucugauchi, J., 2013, Geophysical Kring, D.A., Kramer, G.Y., Collins, G.S., Potter, the Cretaceous-Paleogene Boundary: Science,
characterization of the Chicxulub Impact Crater: R.W.K., and Chandnani, M., 2016, Peak-ring v. 327, p. 1214–1218, doi:10.1126/
Reviews of Geophysics, v. 51, p. 31–52, structure and kinematics from a multi- science.1177265.
doi:10.1002/rog.20007. disciplinary study of the Schrödinger impact Sharpton, V.L., Dalrymple, G.B., Marín, L.E.,
Gulick, S., Morgan, J., and Mellett, C.L., and the basin: Nature Communications, v. 7, 10 p., Ryder, G., Schuraytz, B.C., and Urrutia-
Expedition 364 Scientists, 2017, Expedition 364 doi:10.1038/ncomms13161. Fucugauchi, J., 1992, New links between the
Preliminary Report: Chicxulub: Drilling the Chicxulub impact structure and the Cretaceous/
K-Pg Impact Crater: International Ocean Morgan, J., Warner, M., the Chicxulub Working Tertiary boundary: Nature, v. 359, p. 819–821,
Discovery Program, 38 p., http://dx.doi.org/10 Group, Brittan, J., Buffler, R., Camargo, A., doi:10.1038/359819a0.
.14379/iodp.pr.364.2017. Christeson, G., Denton, P., Hildebrand, A., Shoemaker, E.M., Robinson, M.S., and Eliason,
Hildebrand, A.R., Penfield, G.T., Kring, D.A., Hobbs, R., Macintyre, H., Mackenzie, G., E.M., 1994, The South Pole region of the Moon
Pilkington, M., Camargo-Z., A., Jacobsen, S.B., Maguire, P., Marin, L., Nakamura, Y., as seen by Clementine: Science, v. 266, p. 1851–
and Boynton, W.V., 1991, Chicxulub Crater: A Pilkington, M., Sharpton, V., Snyder, D., Suarez, 1854, doi:10.1126/science.266.5192.1851.
possible Cretaceous/Tertiary boundary impact G., and Trejo, A., 1997, Size and morphology of Smit, J., 1999, The global stratigraphy of the
crater on the Yucatán Peninsula, Mexico: the Chicxulub impact crater: Nature, v. 390, Cretaceous-Tertiary boundary impact ejecta:
Geology, v. 19, p. 867–871, doi:10.1130/0091- p. 472–476, doi:10.1038/37291. Annual Review of Earth and Planetary Sciences,
7613(1991)019<0867:CCAPCT>2.3.CO;2. v. 27, p. 75–113, doi:10.1146/annurev.
Ivanov, B.A., 2005, Numerical modeling of the Morgan, J.V., Warner, M.R., Collins, G.S., Melosh, earth.27.1.75.
largest terrestrial meteorite craters: Solar System H.J., and Christeson, G.L., 2000, Peak ring Steenstra, E.S., Martin, D.J.P., McDonald, F.E.,
Research, v. 39, no. 5, p. 381–409, doi:10.1007/ formation in large impact craters: Earth and Paisarnsombat, S., Venturino, C., O’Hara, S.,
s11208-005-0051-0. Planetary Science Letters, v. 183, p. 347–354, Calzada-Diaz, A., Bottoms, S., Leader, M.K.,
Jull, A.J.T., editor, 2004a, Meteoritics & Planetary doi:10.1016/S0012-821X(00)00307-1. Klaus, K.K., van Westrenen, W., Needham,
Science, v. 39, no. 6, p. 787–1016, D.H., and Kring, D.A., 2016, Analysis of robotic
doi:10.1111/j.1945-5100.2004.tb00928.x. Morgan, J.V., Warner, M.R., Collins, G.S., Grieve, traverses and sample sites in the Schrödinger
Jull, A.J.T., editor, 2004b, Meteoritics & Planetary R.A.F., Christeson, G.L., Gulick, S.P.S., and basin for the HERACLES human-assisted
Science, v. 39, no. 7, p. 1019–1247, Barton, P.J., 2011, Full waveform tomographic sample return mission concept: Advances in
doi:10.1111/j.1945-5100.2004.tb01127.x. images of the peak ring at the Chicxulub impact Space Research, v. 58, p. 1050–1065,
Kramer, G.Y., Kring, D.A., Nahm, A.L., and crater: Journal of Geophysical Research, Solid doi:10.1016/j.asr.2016.05.041.
Pieters, C.M., 2013, Spectral and photogeologic Earth, v. 116, B6, 14 p., B06303, Swisher, C.C., Grajales-Nishimura, J.M.,
mapping of Schrödinger Basin and implications doi:10.1029/2010JB008015. Montanari, A., Margolis, S.V., Claeys, Ph.,
for the post-South Pole-Aitken impact deep Alvarez, W., Renne, P., Cedillo-Pardo, E.,
subsurface stratigraphy: Icarus, v. 223, p. 131– Morgan, J.V., Gulick, S.P.S., Bralower, T., Chenot, Maurrasse, F.J.-M.R., Curtis, G.H., Smit, J., and
148, doi:10.1016/j.icarus.2012.11.008. E., Christeson, G., Claeys, P., Cockell, C., McWilliams, M.O., 1992, Coeval 40Ar/39Ar ages
Kring, D.A., 2000, Impact events and their effects Collins, G.S., Coolen, M.J.L., Ferrière, L., of 65.0 million years ago from Chicxulub crater
on the origin, evolution, and distribution of life: Gebhardt, C., Goto, K., Jones, H., Kring, D.A., melt rocks and Cretaceous-Tertiary boundary
GSA Today, v. 10, no. 8, p. 1–7. Le Ber, E., Lofi, J., Long, X., Lowery, C., tektites: Science, v. 257, p. 954–958, doi:10.1126/
Kring, D.A., 2005, Hypervelocity collisions into Mellett, C., Ocampo-Torres, R., Osinski, G.R., science.257.5072.954.
continental crust composed of sediments and an Perez-Cruz, L., Pickersgill, A., Poelchau, M., Urrutia-Fucugauchi, J., Marin, L., and Trjo-Garcia,
underlying crystalline basement: Comparing the Rae, A., Rasmussen, C., Rebolledo-Vieyra, M., A., 1996, UNAM Scientific drilling program of
Ries (~24 km) and Chicxulub (~180 km) impact Riller, U., Sato, H., Schmitt, D.R., Smit, J., Chicxulub impact structure—Evidence for a 300
craters: Chemie der Erde, v. 65, p. 1–46, Tikoo, S., Tomioka, N., Urrutia-Fucugauchi, J., kilometer crater diameter: Geophysical Research
doi:10.1016/j.chemer.2004.10.003. Whalen, M., Wittmann, A., Yamaguchi, K.E., Letters, v. 23, p. 1565–1568,
Kring, D.A., 2007, The Chicxulub impact event and and Zylberman, W., 2016, The formation of peak doi:10.1029/96GL01566.
its environmental consequences at the rings in large impact craters: Science, v. 354,
Cretaceous-Tertiary boundary: Palaeogeography, p. 878–882, doi:10.1126/science.aah6561. Manuscript received 3 July 2017
Palaeoclimatology, Palaeoecology, v. 255, Revised manuscript received 26 July 2017
p. 4–21, doi:10.1016/j.palaeo.2007.02.037. Potts, J.J., Gullickson, A.L., Curran, N.M., Manuscript accepted 28 July 2017
Dhaliwal, K., Leader, M.K., Rege, R.N., Klaus,
K.K., and Kring, D.A., 2015, Robotic traverse
and sample return strategies for a lunar farside
mission to the Schrödinger basin: Advances in
Space Research, v. 55, p. 1241–1254,
doi:10.1016/j.asr.2014.11.028.
Schulte, P., Alegret, L., Arenillas, I., Arz, J.A.,
Barton, P.J., Bown, P.R., Bralower, T.J.,
8 GSA Today | October 2017