Page 8 - i1052-5173-27-10
P. 8

Basins: Proceedings of Lunar and Planetary           Kring, D.A., and Boynton, W.V., 1992, Petrogenesis       Christeson, G.L., Claeys, P., Cockell, C.S.,
   Science, v. 12A, p. 37–57.                              of an augite-bearing melt rock in the Chicxulub       Collins, G.S., Deutsch, A., Goldin, T.J., Goto,
Gulick, S.P.S., Barton, P.J., Christeson, G.L.,            structure and its relationship to K/T impact          K., Grajeles-Nishimura, J.M., Grieve, R.A.F.,
   Morgan, J.V., McDonald, M., Mendoza-                    spherules in Haiti: Nature, v. 358, p. 141–144,       Gulick, S.P.S., Johnson, K.R., Kiessling, W.,
   Cervantes, K., Pearson, Z.F., Surendra, A.,             doi:10.1038/358141a0.                                 Koeberl, C., Kring, D.A., MacLeod, K.G.,
   Urrutia-Fucugauchi, J., Vermeesch, P.M., and                                                                  Matsui, T., Melosh, J., Montanari, A., Morgan,
   Warner, M.R., 2008, Importance of pre-impact         Kring, D.A., Hildebrand, A.R., and Boynton, W.V.,        J.V., Neal, C.R., Nichols, D.J., Norris, R.D.,
   crustal structure for the asymmetry of the              1991, The petrology of an andesitic melt rock         Pierazzo, E., Ravizza, G., Rebolledo-Vieyra, M.,
   Chicxulub impact crater: Nature Geoscience,             and a polymict breccia from the interior of the       Reimold, W.U., Robin, E., Salge, T., Speijer,
   v. 1, p. 131–135, doi:10.1038/ngeo103.                  Chicxulub structure, Yucatán, Mexico: Lunar           R.P., Sweet, A.R., Urrutia-Fucugauchi, J., Vajda,
Gulick, S.P.S., Christeson, G.L., Barton, P.J.,            and Planetary Science XXII, p. 755–756.               V., Whalen, M.T., and Willumsen, P., 2010, The
   Grieve, R.A.F., Morgan, J.V., and Urrutia-                                                                    Chicxulub asteroid impact and mass extinction at
   Fucugauchi, J., 2013, Geophysical                    Kring, D.A., Kramer, G.Y., Collins, G.S., Potter,        the Cretaceous-Paleogene Boundary: Science,
   characterization of the Chicxulub Impact Crater:        R.W.K., and Chandnani, M., 2016, Peak-ring            v. 327, p. 1214–1218, doi:10.1126/
   Reviews of Geophysics, v. 51, p. 31–52,                 structure and kinematics from a multi-                science.1177265.
   doi:10.1002/rog.20007.                                  disciplinary study of the Schrödinger impact       Sharpton, V.L., Dalrymple, G.B., Marín, L.E.,
Gulick, S., Morgan, J., and Mellett, C.L., and the         basin: Nature Communications, v. 7, 10 p.,            Ryder, G., Schuraytz, B.C., and Urrutia-
   Expedition 364 Scientists, 2017, Expedition 364         doi:10.1038/ncomms13161.                              Fucugauchi, J., 1992, New links between the
   Preliminary Report: Chicxulub: Drilling the                                                                   Chicxulub impact structure and the Cretaceous/
   K-Pg Impact Crater: International Ocean              Morgan, J., Warner, M., the Chicxulub Working            Tertiary boundary: Nature, v. 359, p. 819–821,
   Discovery Program, 38 p., http://dx.doi.org/10          Group, Brittan, J., Buffler, R., Camargo, A.,         doi:10.1038/359819a0.
   .14379/iodp.pr.364.2017.                                Christeson, G., Denton, P., Hildebrand, A.,        Shoemaker, E.M., Robinson, M.S., and Eliason,
Hildebrand, A.R., Penfield, G.T., Kring, D.A.,             Hobbs, R., Macintyre, H., Mackenzie, G.,              E.M., 1994, The South Pole region of the Moon
   Pilkington, M., Camargo-Z., A., Jacobsen, S.B.,         Maguire, P., Marin, L., Nakamura, Y.,                 as seen by Clementine: Science, v. 266, p. 1851–
   and Boynton, W.V., 1991, Chicxulub Crater: A            Pilkington, M., Sharpton, V., Snyder, D., Suarez,     1854, doi:10.1126/science.266.5192.1851.
   possible Cretaceous/Tertiary boundary impact            G., and Trejo, A., 1997, Size and morphology of    Smit, J., 1999, The global stratigraphy of the
   crater on the Yucatán Peninsula, Mexico:                the Chicxulub impact crater: Nature, v. 390,          Cretaceous-Tertiary boundary impact ejecta:
   Geology, v. 19, p. 867–871, doi:10.1130/0091-           p. 472–476, doi:10.1038/37291.                        Annual Review of Earth and Planetary Sciences,
   7613(1991)019<0867:CCAPCT>2.3.CO;2.                                                                           v. 27, p. 75–113, doi:10.1146/annurev.
Ivanov, B.A., 2005, Numerical modeling of the           Morgan, J.V., Warner, M.R., Collins, G.S., Melosh,       earth.27.1.75.
   largest terrestrial meteorite craters: Solar System     H.J., and Christeson, G.L., 2000, Peak ring        Steenstra, E.S., Martin, D.J.P., McDonald, F.E.,
   Research, v. 39, no. 5, p. 381–409, doi:10.1007/        formation in large impact craters: Earth and          Paisarnsombat, S., Venturino, C., O’Hara, S.,
   s11208-005-0051-0.                                      Planetary Science Letters, v. 183, p. 347–354,        Calzada-Diaz, A., Bottoms, S., Leader, M.K.,
Jull, A.J.T., editor, 2004a, Meteoritics & Planetary       doi:10.1016/S0012-821X(00)00307-1.                    Klaus, K.K., van Westrenen, W., Needham,
   Science, v. 39, no. 6, p. 787–1016,                                                                           D.H., and Kring, D.A., 2016, Analysis of robotic
   doi:10.1111/j.1945-5100.2004.tb00928.x.              Morgan, J.V., Warner, M.R., Collins, G.S., Grieve,       traverses and sample sites in the Schrödinger
Jull, A.J.T., editor, 2004b, Meteoritics & Planetary       R.A.F., Christeson, G.L., Gulick, S.P.S., and         basin for the HERACLES human-assisted
   Science, v. 39, no. 7, p. 1019–1247,                    Barton, P.J., 2011, Full waveform tomographic         sample return mission concept: Advances in
   doi:10.1111/j.1945-5100.2004.tb01127.x.                 images of the peak ring at the Chicxulub impact       Space Research, v. 58, p. 1050–1065,
Kramer, G.Y., Kring, D.A., Nahm, A.L., and                 crater: Journal of Geophysical Research, Solid        doi:10.1016/j.asr.2016.05.041.
   Pieters, C.M., 2013, Spectral and photogeologic         Earth, v. 116, B6, 14 p., B06303,                  Swisher, C.C., Grajales-Nishimura, J.M.,
   mapping of Schrödinger Basin and implications           doi:10.1029/2010JB008015.                             Montanari, A., Margolis, S.V., Claeys, Ph.,
   for the post-South Pole-Aitken impact deep                                                                    Alvarez, W., Renne, P., Cedillo-Pardo, E.,
   subsurface stratigraphy: Icarus, v. 223, p. 131–     Morgan, J.V., Gulick, S.P.S., Bralower, T., Chenot,      Maurrasse, F.J.-M.R., Curtis, G.H., Smit, J., and
   148, doi:10.1016/j.icarus.2012.11.008.                  E., Christeson, G., Claeys, P., Cockell, C.,          McWilliams, M.O., 1992, Coeval 40Ar/39Ar ages
Kring, D.A., 2000, Impact events and their effects         Collins, G.S., Coolen, M.J.L., Ferrière, L.,          of 65.0 million years ago from Chicxulub crater
   on the origin, evolution, and distribution of life:     Gebhardt, C., Goto, K., Jones, H., Kring, D.A.,       melt rocks and Cretaceous-Tertiary boundary
   GSA Today, v. 10, no. 8, p. 1–7.                        Le Ber, E., Lofi, J., Long, X., Lowery, C.,           tektites: Science, v. 257, p. 954–958, doi:10.1126/
Kring, D.A., 2005, Hypervelocity collisions into           Mellett, C., Ocampo-Torres, R., Osinski, G.R.,        science.257.5072.954.
   continental crust composed of sediments and an          Perez-Cruz, L., Pickersgill, A., Poelchau, M.,     Urrutia-Fucugauchi, J., Marin, L., and Trjo-Garcia,
   underlying crystalline basement: Comparing the          Rae, A., Rasmussen, C., Rebolledo-Vieyra, M.,         A., 1996, UNAM Scientific drilling program of
   Ries (~24 km) and Chicxulub (~180 km) impact            Riller, U., Sato, H., Schmitt, D.R., Smit, J.,        Chicxulub impact structure—Evidence for a 300
   craters: Chemie der Erde, v. 65, p. 1–46,               Tikoo, S., Tomioka, N., Urrutia-Fucugauchi, J.,       kilometer crater diameter: Geophysical Research
   doi:10.1016/j.chemer.2004.10.003.                       Whalen, M., Wittmann, A., Yamaguchi, K.E.,            Letters, v. 23, p. 1565–1568,
Kring, D.A., 2007, The Chicxulub impact event and          and Zylberman, W., 2016, The formation of peak        doi:10.1029/96GL01566.
   its environmental consequences at the                   rings in large impact craters: Science, v. 354,
   Cretaceous-Tertiary boundary: Palaeogeography,          p. 878–882, doi:10.1126/science.aah6561.           Manuscript received 3 July 2017
   Palaeoclimatology, Palaeoecology, v. 255,                                                                  Revised manuscript received 26 July 2017
   p. 4–21, doi:10.1016/j.palaeo.2007.02.037.           Potts, J.J., Gullickson, A.L., Curran, N.M.,          Manuscript accepted 28 July 2017
                                                           Dhaliwal, K., Leader, M.K., Rege, R.N., Klaus,
                                                           K.K., and Kring, D.A., 2015, Robotic traverse
                                                           and sample return strategies for a lunar farside
                                                           mission to the Schrödinger basin: Advances in
                                                           Space Research, v. 55, p. 1241–1254,
                                                           doi:10.1016/j.asr.2014.11.028.

                                                        Schulte, P., Alegret, L., Arenillas, I., Arz, J.A.,
                                                           Barton, P.J., Bown, P.R., Bralower, T.J.,

8 GSA Today | October 2017
   3   4   5   6   7   8   9   10   11   12   13