Page 10 - gt1512
P. 10
GSA TODAY | DECEMBER 2015 Greenberger, R.N., Mustard, J.F., Cloutis, E.A., Mann, P., Wilson, J.H., Murphy, R.J., Monteiro, S.T., and Schneider, S., 2012, Evaluating Classification
Flemming, R.L., Robertson, K.M., Salvatore, M.R., and Edwards, C.S., Techniques for Mapping Vertical Geology Using Field-Based
2015a, Hydrothermal alteration and diagenesis of terrestrial lacustrine Hyperspectral Sensors: IEEE Transactions on Geoscience and Remote
pillow basalts: Coordination of hyperspectral imaging with laboratory Sensing, v. 50, p. 3066–3080, doi: 10.1109/TGRS.2011.2178419.
measurements: Geochimica et Cosmochimica Acta, v. 171, p. 174–200,
doi: 10.1016/j.gca.2015.08.024. Murphy, R.J., Schneider, S., and Monteiro, S.T., 2014, Mapping Layers of Clay
in a Vertical Geological Surface Using Hyperspectral Imagery: Variability
Greenberger, R.N., Mustard, J.F., Cloutis, E.A., Pratt, L.M., Sauer, P.E., Mann, in Parameters of SWIR Absorption Features under Different Conditions
P., Turner, K., Dyar, M.D., and Bish, D.L., 2015b, Serpentinization, iron of Illumination: Remote Sensing, v. 6, p. 9104–9129, doi: 10.3390/
oxidation, and aqueous conditions in an ophiolite: Implications for rs6099104.
hydrogen production and habitability on Mars: Earth and Planetary
Science Letters, v. 416, p. 21–34, doi: 10.1016/j.epsl.2015.02.002. Mustard, J.F., Murchie, S.L., Pelkey, S.M., Ehlmann, B.L., Milliken, R.E., Grant,
J.A., Bibring, J.-P., Poulet, F., Bishop, J., Noe Dobrea, E.Z., Roach, L.,
Griffith, C.A., Penteado, P., Rannou, P., Brown, R., Boudon, V., Baines, K.H., Seelos, F., Arvidson, R.E., Wiseman, S., et al., 2008, Hydrated silicate
Clark, R., Drossart, P., Buratti, B., Nicholson, P., McKay, C.P., Coustenis, minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM
A., Negrao, A., and Jaumann, R., 2006, Evidence for a Polar Ethane Cloud instrument: Nature, v. 454, p. 305–309, doi: 10.1038/nature07097.
on Titan: Science, v. 313, p. 1620–1622, doi: 10.1126/science.1128245.
Oze, C., and Sharma, M., 2005, Have olivine, will gas: Serpentinization and the
Hausrath, E.M., Navarre-Sitchler, A.K., Sak, P.B., Steefel, C.I., and Brantley, abiogenic production of methane on Mars: Geophysical Research Letters,
S.L., 2008, Basalt weathering rates on Earth and the duration of liquid v. 32, doi: 10.1029/2005GL022691.
water on the plains of Gusev Crater, Mars: Geology, v. 36, p. 67–70, doi:
10.1130/G24238A.1. Painter, T.H., Dozier, J., Roberts, D.A., Davis, R.E., and Green, R.O., 2003,
Retrieval of subpixel snow-covered area and grain size from imaging
Kelley, D.S., Karson, J.A., Blackman, D.K., Früh-Green, G.L., Butterfield, D.A., spectrometer data: Remote Sensing of Environment, v. 85, p. 64–77, doi:
Lilley, M.D., Olson, E.J., Schrenk, M.O., Roe, K.K., Lebon, G.T., 10.1016/S0034-4257(02)00187-6.
Rivizzigno, P., and the AT3-60 Shipboard Party, 2001, An off-axis
hydrothermal vent field near the Mid-Atlantic Ridge at 30° N: Nature, Pearlman, J.S., Barry, P.S., Segal, C.C., Shepanski, J., Beiso, D., and Carman,
v. 412, p. 145–149, doi: 10.1038/35084000. S.L., 2003, Hyperion, a space-based imaging spectrometer: IEEE
Transactions on Geoscience and Remote Sensing, v. 41, p. 1160–1173, doi:
Kelley, D.S., Karson, J.A., Früh-Green, G.L., Yoerger, D.R., Shank, T.M., 10.1109/TGRS.2003.815018.
Butterfield, D.A., Hayes, J.M., Schrenk, M.O., Olson, E.J., Proskurowski,
G., Jakuba, M., Bradley, A., Larson, B., Ludwig, K., et al., 2005, A Pieters, C.M., Goswami, J.N., Clark, R.N., Annadurai, M., Boardman, J., Buratti,
serpentinite-hosted ecosystem: The Lost City hydrothermal field: Science, B., Combe, J.-P., Dyar, M.D., Green, R., Head, J.W., Hibbitts, C., Hicks,
v. 307, p. 1428–1434, doi: 10.1126/science.1102556. M., Isaacson, P., Klima, R., et al., 2009, Character and spatial distribution
of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1:
Kruse, F.A., Bedell, R.L., Taranik, J.V., Peppin, W.A., Weatherbee, O., and Science, v. 326, p. 568–572, doi: 10.1126/science.1178658.
Calvin, W.M., 2012, Mapping alteration minerals at prospect, outcrop and
drill core scales using imaging spectrometry: International Journal of Pieters, C.M., Besse, S., Boardman, J., Buratti, B., Cheek, L., Clark, R.N.,
Remote Sensing, v. 33, p. 1780–1798, doi: 10.1080/01431161.2011.600350. Combe, J.P., Dhingra, D., Goswami, J.N., Green, R.O., Head, J.W.,
Isaacson, P., Klima, R., Kramer, G., et al., 2011, Mg-spinel lithology:
Kurz, T.H., Dewit, J., Buckley, S.J., Thurmond, J.B., Hunt, D.W., and Swennen, A new rock type on the lunar farside: Journal of Geophysical Research.
R., 2012, Hyperspectral image analysis of different carbonate lithologies Planets, v. 116, E00G08, doi: 10.1029/2010JE003727.
(limestone, karst and hydrothermal dolomites): the Pozalagua Quarry
case study (Cantabria, North-west Spain): Sedimentology, v. 59, p. 623– Pilorget, C., and Bibring, J.-P., 2013, NIR reflectance hyperspectral microscopy
645, doi: 10.1111/j.1365-3091.2011.01269.x. for planetary science: Application to the MicrOmega instrument: Planetary
and Space Science, v. 76, p. 42–52, doi: 10.1016/j.pss.2012.11.004.
Manning, C.E., and Bird, D.K., 1986, Hydrothermal clinopyroxenes of the
Skaergaard intrusion: Contributions to Mineralogy and Petrology, v. 92, Schulte, M., Blake, D., Hoehler, T., and McCollom, T., 2006, Serpentinization
p. 437–447, doi: 10.1007/BF00374426. and its implications for life on the early Earth and Mars: Astrobiology,
v. 6, p. 364–376, doi: 10.1089/ast.2006.6.364.
Marcaillou, C., Muñoz, M., Vidal, O., Parra, T., and Harfouche, M., 2011,
Mineralogical evidence for H2 degassing during serpentinization at Sleep, N.H., Meibom, A., Fridriksson, T., Coleman, R.G., and Bird, D.K., 2004,
300 °C/300 bar: Earth and Planetary Science Letters, v. 303, p. 281–290, H2-rich fluids from serpentinization: Geochemical and biotic implications:
doi: 10.1016/j.epsl.2011.01.006. PNAS, v. 101, p. 12,818–12,823, doi: 10.1073/pnas.0405289101.
McCollom, T.M., and Seewald, J.S., 2013, Serpentinites, Hydrogen, and Life: Vane, G., Green, R.O., Chrien, T.G., Enmark, H.T., Hansen, E.G., and Porter,
Elements, v. 9, p. 129–134, doi: 10.2113/gselements.9.2.129. W.M., 1993, The airborne visible/infrared imaging spectrometer (AVIRIS):
Remote Sensing of Environment, v. 44, p. 127–143, doi: 10.1016/0034-
McCord, T.B., Hansen, G.B., Fanale, F.P., Carlson, R.W., Matson, D.L., 4257(93)90012-M.
Johnson, T.V., Smythe, W.D., Crowley, J.K., Martin, P.D., Ocampo, A.,
Hibbitts, C.A., and Granahan, J.C., and the NIMS Team, 1998, Salts on Van Gorp, B., Mouroulis, P., Blaney, D., Green, R.O., Ehlmann, B.L., and
Europa’s surface detected by Galileo’s near infrared mapping spectrometer: Rodriguez, J.I., 2014, Ultra-compact imaging spectrometer for remote, in
Science, v. 280, p. 1242–1245, doi: 10.1126/science.280.5367.1242. situ, and microscopic planetary mineralogy: Journal of Applied Remote
Sensing, v. 8, 084988, doi: 10.1117/1.JRS.8.084988.
Murchie, S.L., Mustard, J.F., Ehlmann, B.L., Milliken, R.E., Bishop, J.L.,
McKeown, N.K., Noe Dobrea, E.Z., Seelos, F.P., Buczkowski, D.L., Yokoyama, E., Nédélec, A., Baratoux, D., Trindade, R.I.F., Fabre, S., and Berger,
Wiseman, S.M., Arvidson, R.E., Wray, J.J., Swayze, G., Clark, R.N., et al., G., 2015, Hydrothermal alteration in basalts from Vargeão impact structure,
2009, A synthesis of Martian aqueous mineralogy after 1 Mars year of south Brazil, and implications for recognition of impact-induced
observations from the Mars Reconnaissance Orbiter: Journal of hydrothermalism on Mars: Icarus, v. 252, p. 347–365, doi: 10.1016/j
Geophysical Research, v. 114, E2, doi: 10.1029/2009JE003342. .icarus.2015.02.001.
Murphy, R.J., and Monteiro, S.T., 2013, Mapping the distribution of ferric iron Manuscript received 29 May 2015; accepted 27 Aug. 2015. ✸
minerals on a vertical mine face using derivative analysis of hyperspectral
imagery (430–970 nm): ISPRS Journal of Photogrammetry and Remote
Sensing, v. 75, p. 29–39, doi: 10.1016/j.isprsjprs.2012.09.014.
10