Page 10 - gt1512
P. 10

GSA TODAY | DECEMBER 2015  Greenberger, R.N., Mustard, J.F., Cloutis, E.A., Mann, P., Wilson, J.H.,            Murphy, R.J., Monteiro, S.T., and Schneider, S., 2012, Evaluating Classification
                                 Flemming, R.L., Robertson, K.M., Salvatore, M.R., and Edwards, C.S.,                Techniques for Mapping Vertical Geology Using Field-Based
                                 2015a, Hydrothermal alteration and diagenesis of terrestrial lacustrine             Hyperspectral Sensors: IEEE Transactions on Geoscience and Remote
                                 pillow basalts: Coordination of hyperspectral imaging with laboratory               Sensing, v. 50, p. 3066–3080, doi: 10.1109/TGRS.2011.2178419.
                                 measurements: Geochimica et Cosmochimica Acta, v. 171, p. 174–200,
                                 doi: 10.1016/j.gca.2015.08.024.                                               Murphy, R.J., Schneider, S., and Monteiro, S.T., 2014, Mapping Layers of Clay
                                                                                                                     in a Vertical Geological Surface Using Hyperspectral Imagery: Variability
                           Greenberger, R.N., Mustard, J.F., Cloutis, E.A., Pratt, L.M., Sauer, P.E., Mann,          in Parameters of SWIR Absorption Features under Different Conditions
                                 P., Turner, K., Dyar, M.D., and Bish, D.L., 2015b, Serpentinization, iron           of Illumination: Remote Sensing, v. 6, p. 9104–9129, doi: 10.3390/
                                 oxidation, and aqueous conditions in an ophiolite: Implications for                 rs6099104.
                                 hydrogen production and habitability on Mars: Earth and Planetary
                                 Science Letters, v. 416, p. 21–34, doi: 10.1016/j.epsl.2015.02.002.           Mustard, J.F., Murchie, S.L., Pelkey, S.M., Ehlmann, B.L., Milliken, R.E., Grant,
                                                                                                                     J.A., Bibring, J.-P., Poulet, F., Bishop, J., Noe Dobrea, E.Z., Roach, L.,
                           Griffith, C.A., Penteado, P., Rannou, P., Brown, R., Boudon, V., Baines, K.H.,            Seelos, F., Arvidson, R.E., Wiseman, S., et al., 2008, Hydrated silicate
                                 Clark, R., Drossart, P., Buratti, B., Nicholson, P., McKay, C.P., Coustenis,        minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM
                                 A., Negrao, A., and Jaumann, R., 2006, Evidence for a Polar Ethane Cloud            instrument: Nature, v. 454, p. 305–309, doi: 10.1038/nature07097.
                                 on Titan: Science, v. 313, p. 1620–1622, doi: 10.1126/science.1128245.
                                                                                                               Oze, C., and Sharma, M., 2005, Have olivine, will gas: Serpentinization and the
                           Hausrath, E.M., Navarre-Sitchler, A.K., Sak, P.B., Steefel, C.I., and Brantley,           abiogenic production of methane on Mars: Geophysical Research Letters,
                                 S.L., 2008, Basalt weathering rates on Earth and the duration of liquid             v. 32, doi: 10.1029/2005GL022691.
                                 water on the plains of Gusev Crater, Mars: Geology, v. 36, p. 67–70, doi:
                                 10.1130/G24238A.1.                                                            Painter, T.H., Dozier, J., Roberts, D.A., Davis, R.E., and Green, R.O., 2003,
                                                                                                                     Retrieval of subpixel snow-covered area and grain size from imaging
                           Kelley, D.S., Karson, J.A., Blackman, D.K., Früh-Green, G.L., Butterfield, D.A.,          spectrometer data: Remote Sensing of Environment, v. 85, p. 64–77, doi:
                                 Lilley, M.D., Olson, E.J., Schrenk, M.O., Roe, K.K., Lebon, G.T.,                   10.1016/S0034-4257(02)00187-6.
                                 Rivizzigno, P., and the AT3-60 Shipboard Party, 2001, An off-axis
                                 hydrothermal vent field near the Mid-Atlantic Ridge at 30° N: Nature,         Pearlman, J.S., Barry, P.S., Segal, C.C., Shepanski, J., Beiso, D., and Carman,
                                 v. 412, p. 145–149, doi: 10.1038/35084000.                                          S.L., 2003, Hyperion, a space-based imaging spectrometer: IEEE
                                                                                                                     Transactions on Geoscience and Remote Sensing, v. 41, p. 1160–1173, doi:
                           Kelley, D.S., Karson, J.A., Früh-Green, G.L., Yoerger, D.R., Shank, T.M.,                 10.1109/TGRS.2003.815018.
                                 Butterfield, D.A., Hayes, J.M., Schrenk, M.O., Olson, E.J., Proskurowski,
                                 G., Jakuba, M., Bradley, A., Larson, B., Ludwig, K., et al., 2005, A          Pieters, C.M., Goswami, J.N., Clark, R.N., Annadurai, M., Boardman, J., Buratti,
                                 serpentinite-hosted ecosystem: The Lost City hydrothermal field: Science,           B., Combe, J.-P., Dyar, M.D., Green, R., Head, J.W., Hibbitts, C., Hicks,
                                 v. 307, p. 1428–1434, doi: 10.1126/science.1102556.                                 M., Isaacson, P., Klima, R., et al., 2009, Character and spatial distribution
                                                                                                                     of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1:
                           Kruse, F.A., Bedell, R.L., Taranik, J.V., Peppin, W.A., Weatherbee, O., and               Science, v. 326, p. 568–572, doi: 10.1126/science.1178658.
                                 Calvin, W.M., 2012, Mapping alteration minerals at prospect, outcrop and
                                 drill core scales using imaging spectrometry: International Journal of        Pieters, C.M., Besse, S., Boardman, J., Buratti, B., Cheek, L., Clark, R.N.,
                                 Remote Sensing, v. 33, p. 1780–1798, doi: 10.1080/01431161.2011.600350.             Combe, J.P., Dhingra, D., Goswami, J.N., Green, R.O., Head, J.W.,
                                                                                                                     Isaacson, P., Klima, R., Kramer, G., et al., 2011, Mg-spinel lithology:
                           Kurz, T.H., Dewit, J., Buckley, S.J., Thurmond, J.B., Hunt, D.W., and Swennen,            A new rock type on the lunar farside: Journal of Geophysical Research.
                                 R., 2012, Hyperspectral image analysis of different carbonate lithologies           Planets, v. 116, E00G08, doi: 10.1029/2010JE003727.
                                 (limestone, karst and hydrothermal dolomites): the Pozalagua Quarry
                                 case study (Cantabria, North-west Spain): Sedimentology, v. 59, p. 623–       Pilorget, C., and Bibring, J.-P., 2013, NIR reflectance hyperspectral microscopy
                                 645, doi: 10.1111/j.1365-3091.2011.01269.x.                                         for planetary science: Application to the MicrOmega instrument: Planetary
                                                                                                                     and Space Science, v. 76, p. 42–52, doi: 10.1016/j.pss.2012.11.004.
                           Manning, C.E., and Bird, D.K., 1986, Hydrothermal clinopyroxenes of the
                                 Skaergaard intrusion: Contributions to Mineralogy and Petrology, v. 92,       Schulte, M., Blake, D., Hoehler, T., and McCollom, T., 2006, Serpentinization
                                 p. 437–447, doi: 10.1007/BF00374426.                                                and its implications for life on the early Earth and Mars: Astrobiology,
                                                                                                                     v. 6, p. 364–376, doi: 10.1089/ast.2006.6.364.
                           Marcaillou, C., Muñoz, M., Vidal, O., Parra, T., and Harfouche, M., 2011,
                                 Mineralogical evidence for H2 degassing during serpentinization at            Sleep, N.H., Meibom, A., Fridriksson, T., Coleman, R.G., and Bird, D.K., 2004,
                                 300 °C/300 bar: Earth and Planetary Science Letters, v. 303, p. 281–290,            H2-rich fluids from serpentinization: Geochemical and biotic implications:
                                 doi: 10.1016/j.epsl.2011.01.006.                                                    PNAS, v. 101, p. 12,818–12,823, doi: 10.1073/pnas.0405289101.

                           McCollom, T.M., and Seewald, J.S., 2013, Serpentinites, Hydrogen, and Life:         Vane, G., Green, R.O., Chrien, T.G., Enmark, H.T., Hansen, E.G., and Porter,
                                 Elements, v. 9, p. 129–134, doi: 10.2113/gselements.9.2.129.                        W.M., 1993, The airborne visible/infrared imaging spectrometer (AVIRIS):
                                                                                                                     Remote Sensing of Environment, v. 44, p. 127–143, doi: 10.1016/0034-
                           McCord, T.B., Hansen, G.B., Fanale, F.P., Carlson, R.W., Matson, D.L.,                    4257(93)90012-M.
                                 Johnson, T.V., Smythe, W.D., Crowley, J.K., Martin, P.D., Ocampo, A.,
                                 Hibbitts, C.A., and Granahan, J.C., and the NIMS Team, 1998, Salts on         Van Gorp, B., Mouroulis, P., Blaney, D., Green, R.O., Ehlmann, B.L., and
                                 Europa’s surface detected by Galileo’s near infrared mapping spectrometer:          Rodriguez, J.I., 2014, Ultra-compact imaging spectrometer for remote, in
                                 Science, v. 280, p. 1242–1245, doi: 10.1126/science.280.5367.1242.                  situ, and microscopic planetary mineralogy: Journal of Applied Remote
                                                                                                                     Sensing, v. 8, 084988, doi: 10.1117/1.JRS.8.084988.
                           Murchie, S.L., Mustard, J.F., Ehlmann, B.L., Milliken, R.E., Bishop, J.L.,
                                 McKeown, N.K., Noe Dobrea, E.Z., Seelos, F.P., Buczkowski, D.L.,              Yokoyama, E., Nédélec, A., Baratoux, D., Trindade, R.I.F., Fabre, S., and Berger,
                                 Wiseman, S.M., Arvidson, R.E., Wray, J.J., Swayze, G., Clark, R.N., et al.,         G., 2015, Hydrothermal alteration in basalts from Vargeão impact structure,
                                 2009, A synthesis of Martian aqueous mineralogy after 1 Mars year of                south Brazil, and implications for recognition of impact-induced
                                 observations from the Mars Reconnaissance Orbiter: Journal of                       hydrothermalism on Mars: Icarus, v. 252, p. 347–365, doi: 10.1016/j
                                 Geophysical Research, v. 114, E2, doi: 10.1029/2009JE003342.                        .icarus.2015.02.001.

                           Murphy, R.J., and Monteiro, S.T., 2013, Mapping the distribution of ferric iron     Manuscript received 29 May 2015; accepted 27 Aug. 2015. ✸
                                 minerals on a vertical mine face using derivative analysis of hyperspectral
                                 imagery (430–970 nm): ISPRS Journal of Photogrammetry and Remote
                                 Sensing, v. 75, p. 29–39, doi: 10.1016/j.isprsjprs.2012.09.014.

10
   5   6   7   8   9   10   11   12   13   14   15