Page 10 - i1052-5173-26-9
P. 10
GSA TODAY | SEPTEMBER 2016 became widespread, and these provided a major spurt for meta- Cawood, P.A., Hawkesworth, C.J., and Dhuime, B., 2013, The continental
zoan evolution. record and the generation of continental crust: GSA Bulletin, v. 125,
no. 1–2, p. 14–32, doi: 10.1130/B30722.1.
The changing thermal structure of Earth resulted in changes
in the properties of the lithosphere, and hence in tectonics and Clift, P.D., Vannucchi, P., and Morgan, J.P., 2009, Crustal redistribution, crust-
ultimately in surficial processes. As Earth cooled from the late mantle recycling and Phanerozoic evolution of the continental crust:
Archean (Fig. 4C), the continental and oceanic lithospheres Earth Science Reviews, v. 97, no. 1–4, p. 80–104, doi: 10.1016/j.earscirev
strengthened because they contained less melt and were charac- .2009.10.003.
terized by lower temperatures. Subduction and plate tectonics
caused profound changes with the onset of significant horizontal Condie, K.C., 1998, Episodic continental growth and supercontinents: A mantle
tectonics, the development of thickened mountain belts and avalanche connection?: Earth and Planetary Science Letters, v. 163,
increased erosion, a change in crustal compositions, and the recy- no. 1–4, p. 97–108, doi: 10.1016/S0012-821X(98)00178-2.
cling of continental crust back into the mantle. Secular cooling of
Earth impacted lithospheric rheology, magmatic activity, and Condie, K.C., and Aster, R.C., 2010, Episodic zircon age spectra of orogenic
thickness, which in turn influenced surficial processes and granitoids: The supercontinent connection and continental growth:
features. Secular changes in the rheology of the lithosphere deter- Precambrian Research, v. 180, no. 3–4, p. 227–236, doi: 10.1016/
mine how it behaves in terms of global tectonics, the magmas j.precamres.2010.03.008.
generated, and the differential preservation of rocks generated in
different settings that have shaped the geological record. Condie, K.C., and Kröner, A., 2013, The building blocks of continental crust:
Evidence for a major change in the tectonic setting of continental growth
ACKNOWLEDGMENTS at the end of the Archean: Gondwana Research, v. 23, no. 2, p. 394–402,
doi: 10.1016/j.gr.2011.09.011.
We thank the Natural Environment Research Council (grants NE/
J021822/1 and NE/K008862/1) for funding, and Mike Brown, Adrian Condie, K.C., Bickford, M.E., Aster, R.C., Belousova, E., and Scholl, D.W., 2011,
Lenardic, and Brendan Murphy for their detailed and helpful reviews. Episodic zircon ages, Hf isotopic composition, and the preservation rate of
continental crust: GSA Bulletin, v. 123, no. 5–6, p. 951–957, doi: 10.1130/
REFERENCES CITED B30344.1.
Albarède, F., 1998, The growth of continental crust: Tectonophysics, v. 296, Dhuime, B., Hawkesworth, C.J., Cawood, P.A., and Storey, C.D., 2012, A
no. 1–2, p. 1–14, doi: 10.1016/S0040-1951(98)00133-4. Change in the geodynamics of continental growth 3 billion years ago:
Science, v. 335, no. 6074, p. 1334–1336, doi: 10.1126/science.1216066.
Arndt, N., and Davaille, A., 2013, Episodic Earth evolution: Tectonophysics,
v. 609, p. 661–674, doi: 10.1016/j.tecto.2013.07.002. Dhuime, B., Wuestefeld, A., and Hawkesworth, C.J., 2015, Emergence of
modern continental crust about 3 billion years ago: Nature Geoscience,
Ashwal, L.D., 2010, The Temporality of Anorthosites: Canadian Mineralogist, v. 8, p. 552–555, doi:10.1038/ngeo2466.
v. 48, no. 4, p. 711–728, doi: 10.3749/canmin.48.4.711.
Elkins-Tanton, L.T., 2008, Linked magma ocean solidification and atmospheric
Belousova, E.A., Kostitsyn, Y.A., Griffin, W.L., Begg, G.C., O’Reilly, S.Y., and growth for Earth and Mars: Earth and Planetary Science Letters, v. 271,
Pearson, N.J., 2010, The growth of the continental crust: Constraints from no. 1–4, p. 181–191, doi: 10.1016/j.epsl.2008.03.062.
zircon Hf-isotope data: Lithos, v. 119, no. 3–4, p. 457–466, doi: 10.1016/
j.lithos.2010.07.024. Eriksson, K.A., Campbell, I.H., Palin, J.M., and Allen, C.M., 2003,
Predominance of Grenvillian magmatism recorded in detrital zircons from
Bradley, D.C., 2008, Passive margins through earth history: Earth Science modern Appalachian rivers: The Journal of Geology, v. 111, p. 707–717,
Reviews, v. 91, no. 1–4, p. 1–26, doi: 10.1016/j.earscirev.2008.08.001. doi: 10.1086/378338.
Bradley, D.C., 2011, Secular trends in the geologic record and the Flament, N., Coltice, N., and Rey, P.F., 2013, The evolution of the 87Sr/86Sr of
supercontinent cycle: Earth Science Reviews, v. 108, no. 1–2, p. 16–33, marine carbonates does not constrain continental growth: Precambrian
doi: 10.1016/j.earscirev.2011.05.003. Research, v. 229, p. 177–188, doi: 10.1016/j.precamres.2011.10.009.
Brown, M., 2006, Duality of thermal regimes is the distinctive characteristic of GEOROC, 2016, Geochemistry of Rocks of the Oceans and Continents: Max
plate tectonics since the Neoarchean: Geology, v. 34, no. 11, p. 961–964, Planck Institute for Chemistry, http://georoc.mpch-mainz.gwdg.de/
doi: 10.1130/G22853A.1. georoc/ (last accessed 24 June 2016).
Brown, M., 2007, Metamorphic conditions in orogenic belts: A record of secular Gerya, T., 2014, Precambrian geodynamics: Concepts and models: Gondwana
change: International Geology Review, v. 49, no. 3, p. 193–234, doi: 10.2747/ Research, v. 25, no. 2, p. 442–463, doi: 10.1016/j.gr.2012.11.008.
0020-6814.49.3.193.
Gomes, R., Levison, H.F., Tsiganis, K., and Morbidelli, A., 2005, Origin of the
Brown, M., 2014, The contribution of metamorphic petrology to understanding cataclysmic Late Heavy Bombardment period of the terrestrial planets:
lithosphere evolution and geodynamics: Geoscience Frontiers, v. 5, no. 4, Nature, v. 435, 7041, p. 466–469, doi: 10.1038/nature03676.
p. 553–569, doi: 10.1016/j.gsf.2014.02.005.
Goodwin, A.M., 1996, Principles of Precambrian Geology: London, Academic
Campbell, I.H., 2003, Constraints on continental growth models from Nb/U Press, 327 p.
ratios in the 3.5 Ga Barberton and other Archaean basalt-komatiite suites:
American Journal of Science, v. 303, no. 4, p. 319–351, doi: 10.2475/ Gower, C.F., and Krogh, T.E., 2002, A U-Pb geochronological review of the
ajs.303.4.319. Proterozoic history of the eastern Grenville Province: Canadian Journal of
Earth Sciences, v. 39, p. 795–829.
Carlson, R.W., Pearson, D.G., and James, D.E., 2005, Physical, chemical, and
chronological characteristics of continental mantle: Reviews of Hawkesworth, C.J., and Kemp, A.I.S., 2006, The differentiation and rates of
Geophysics, v. 43, no. 1, RG1001, doi: 10.1029/2004RG000156. generation of the continental crust: Chemical Geology, v. 226, no. 3–4,
p. 134–143, doi: 10.1016/j.chemgeo.2005.09.017.
Cawood, P.A., and Hawkesworth, C.J., 2014, Earth’s middle age: Geology, v. 42,
no. 6, p. 503–506, doi: 10.1130/G35402.1. Hawkesworth, C., Cawood, P., Kemp, T., Storey, C., and Dhuime, B., 2009,
A matter of preservation: Science, v. 323, p. 49–50, doi: 10.1126/
Cawood, P.A., and Hawkesworth, C.J., 2015, Temporal relations between science.1168549.
mineral deposits and global tectonic cycles, in Jenkins, G.R.T., Lusty,
P.A.J., McDonald, I., Smith, M.P., Boyce, A.J., and Wilkinson, J.J., eds., Hawkesworth, C., Dhuime, B., Pietranik, A., Cawood, P., Kemp, T., and
Ore Deposits in an Evolving Earth: v. 393, Geological Society, London, Storey, C., 2010, The generation and evolution of the continental
Special Publication 393, p. 9–21, doi: 10.1144/SP393.1. crust: Journal of the Geological Society, v. 167, p. 229–248, doi: 10.1144/
0016-76492009-072.
Hawkesworth, C., Cawood, P., and Dhuime, B., 2013, Continental growth and
the crustal record: Tectonophysics, v. 609, p. 651–660, doi: 10.1016/j.tecto
.2013.08.013.
Holland, H.D., 2006, The oxygenation of the atmosphere and oceans:
Philosophical Transactions of the Royal Society of London, Series B,
Biological Sciences, v. 361, no. 1470, p. 903–915, doi: 10.1098/rstb.2006.1838.
10