Page 10 - i1052-5173-26-11
P. 10

GSA TODAY | NOVEMBER 2016      Carbone, C., and Narbonne, G.M., 2014, When life got smart: The evolution of         Gehling, J.G., and Droser, M.L., 2013, How well do fossil assemblages of the
                                      behavioral complexity through the Ediacaran and Early Cambrian of NW                Ediacara Biota tell time?: Geology, v. 41, no. 4, p. 447–450, doi: 10.1130/
                                      Canada: Journal of Paleontology, v. 88, p. 309–330, doi: 10.1666/13-066.            G33881.1.

                               Chen, J., and Zhou, G., 1997, Biology of the Chengjiang fauna: Bulletin of the       Gehling, J.G., Runnegar, B.N., and Droser, M.L., 2014, Scratch traces of large
                                      National Museum of Natural Science (Taichung, China), v. 10, p. 11–105.             Ediacara bilaterian animals: Journal of Paleontology, v. 88, p. 284–298,
                                                                                                                          doi: 10.1666/13-054.
                               Chen, Z., Zhou, C., Meyer, M., Xiang, K., Schiffbauer, J.D., Yuan, X., and Xiao,
                                      S., 2013, Trace fossil evidence for Ediacaran bilaterian animals with         Ghisalberti, M., Gold, D.A., Laflamme, M., Clapham, M.E., Narbonne, G.M.,
                                      complex behaviors: Precambrian Research, v. 224, p. 690–701, doi:                   Summons, R.E., Johnston, D.T., and Jacobs, D.K., 2014, Canopy flow
                                      10.1016/j.precamres.2012.11.004.                                                    analysis reveals the advantage of size in the oldest communities of
                                                                                                                          multicellular eukaryotes: Current Biology, v. 24, p. 305–309, doi:
                               Chen, L., Xiao, S., Pang, K., Zhou, C., and Yuan, X., 2014a, Cell differentiation          10.1016/j.cub.2013.12.017.
                                      and germ-soma separation in Ediacaran animal embryo-like fossils:
                                      Nature, v. 516, p. 238–241, doi: 10.1038/nature13766.                         Grotzinger, J.P., Watters, W.A., and Knoll, A.H., 2000, Calcified metazoans in
                                                                                                                          thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group,
                               Chen, Z., Zhou, C., Xiao, S., Wang, W., Guan, C., Hua, H., and Yuan, X., 2014b,            Namibia: Paleobiology, v. 26, no. 3, p. 334–359, doi:
                                      New Ediacara fossils preserved in marine limestone and their ecological             10.1666/0094-8373(2000)026<0334:CMITSR>2.0.CO;2.
                                      implications: Nature Scientific Reports, v. 4, 4180, doi: 10.1038/srep04180.
                                                                                                                    Hagadorn, J.W., and Bottjer, D.J., 1999, Restriction of a Late Neoproterozoic
                               Clapham, M.E., and Narbonne, G.M., 2002, Ediacaran epifaunal tiering:                      biotope: Suspect-microbial structures and trace fossils at the Vendian–
                                      Geology, v. 30, no. 7, p. 627–630, doi: 10.1130/0091-7613(2002)030                  Cambrian transition: Palaios, v. 14, p. 73–85, doi: 10.2307/3515362.
                                      <0627:EET>2.0.CO;2.
                                                                                                                    Hagadorn, J.W., and Waggoner, B.M., 2000, Ediacaran fossils from the
                               Conway Morris, S., 1986, The community structure of the middle Cambrian                    southwestern Great Basin, United States: Journal of Paleontology, v. 74,
                                      Phyllopod Bed (Burgess Shale): Palaeontology, v. 29, p. 423–467.                    no. 2, p. 349–359, doi: 10.1666/0022-3360(2000)074<0349:EFFTSG
                                                                                                                          >2.0.CO;2.
                               Conway Morris, S., 1993, Ediacaran-like fossils in Cambrian Burgess Shale-type
                                      faunas of North America: Palaeontology, v. 36, p. 593–635.                    Hagadorn, J.W., Fedo, C.M., and Waggoner, B.M., 2000, Early Cambrian
                                                                                                                          Ediacaran-type fossils from California: Journal of Paleontology, v. 74,
                               Conway Morris, S., 2000, The Cambrian “explosion”: Slow-fuse or megatonnage?:              no. 4, p. 731–740, doi: 10.1666/0022-3360(2000)074<0731:ECETFF
                                      Proceedings of the National Academy of Sciences of the United States of             >2.0.CO;2.
                                      America, v. 97, p. 4426–4429, doi: 10.1073/pnas.97.9.4426.
                                                                                                                    Hofmann, H.J., and Mountjoy, E.W., 2001, Namacalathus-Cloudina assemblage
                               Cortijo, I., Mus, M.M., Jensen, S., and Palacios, T., 2010, A new species of               in Neoproterozoic Miette Group (Byng Formation), British Columbia:
                                      Cloudina from the terminal Ediacaran of Spain: Precambrian Research,                Canada’s oldest shelly fossils: Geology, v. 29, no. 12, p. 1091–1094, doi:
                                      v. 176, p. 1–10, doi: 10.1016/j.precamres.2009.10.010.                              10.1130/0091-7613(2001)029<1091:NCAINM>2.0.CO;2.

                               Cortijo, I., Cai, Y., Hua, H., Schiffbauer, J.D., and Xiao, S., 2015a, Life history  Hua, H., Chen, Z., Yuan, X., Zhang, L., and Xiao, S., 2005, Skeletogenesis and
                                      and autecology of an Ediacaran index fossil: Development and dispersal              asexual reproduction in the earliest biomineralizing animal Cloudina:
                                      of Cloudina: Gondwana Research, v. 28, p. 419–424, doi: 10.1016/j                   Geology, v. 33, no. 4, p. 277–280, doi: 10.1130/G21198.1.
                                      .gr.2014.05.001.
                                                                                                                    Hua, H., Pratt, B.R., and Zhang, L., 2003, Borings in Cloudina shells: Complex
                               Cortijo, I., Mus, M.M., Jensen, S., and Palacios, T., 2015b, Late Ediacaran                predator-prey dynamics in the terminal Neoproterozoic: Palaios, v. 18,
                                      skeletal body fossil assemblage from the Navalpino anticline, central               p. 454–459, doi: 10.1669/0883-1351(2003)018<0454:BICSCP>2.0.CO;2.
                                      Spain: Precambrian Research, v. 267, p. 186–195, doi: 10.1016/j
                                      .precamres.2015.06.013.                                                       Huntley, J.W., and Kowalewski, M., 2007, Strong coupling of predation
                                                                                                                          intensity and diversity in the Phanerozoic fossil record: Proceedings of the
                               Darroch, S.A.F., Sperling, E.A., Boag, T.H., Racicot, R.A., Mason, S.J., Morgan,           National Academy of Sciences of the United States of America, v. 104,
                                      A.S., Tweedt, S., Myrow, P., Johnston, D.T., and Erwin, D.H., 2015, Biotic          p. 15,006–15,010, doi: 10.1073/pnas.0704960104.
                                      replacement and mass extinction of the Ediacara biota: Proceedings of the
                                      Royal Society B (Biological Sciences), v. 282, 1814, doi: 10.1098/            Huntley, J.W., Yanes, Y., Kowalewski, M., Castillo, C., Delgado-Huertas, A.,
                                      rspb.2015.1003.                                                                     Ibanez, M., Alonso, M.R., Ortiz, J.E., and de Torres, T., 2008, Testing
                                                                                                                          limiting similarity in Quaternary terrestrial gastropods: Paleobiology,
                               Darroch, S.A.F., Boag, T.H., Racicot, R.A., Tweedt, S., Mason, S.J., Erwin, D.H.,          v. 34, p. 378–388, doi: 10.1666/07058.1.
                                      and Laflamme, M., 2016, A mixed Ediacaran-metazoan fossil assemblage
                                      from the Zaris Sub-basin, Namibia: Palaeogeography, Palaeoclimatology,        Jensen, S., 2003, The Proterozoic and earliest Cambrian trace fossil record:
                                      Palaeoecology, doi: 10.1016/j.palaeo.2016.07.003.                                   Patterns, problems and perspectives: Integrative and Comparative
                                                                                                                          Biology, v. 43, p. 219–228, doi: 10.1093/icb/43.1.219.
                               dos Reis, M., Thawornwattana, Y., Angelis, K., Telford, M.J., Donoghue, P.C.,
                                      and Yang, Z., 2015, Uncertainty in the timing of origin of animals and the    Jensen, S., Gehling, J.G., and Droser, M.L., 1998, Ediacara-type fossils in
                                      limits of precision in molecular timescales: Current Biology, v. 25, no. 22,        Cambrian sediments: Nature, v. 393, p. 567–569, doi: 10.1038/31215.
                                      p. 2939–2950, doi: 10.1016/j.cub.2015.09.066.
                                                                                                                    Jensen, S., Droser, M.L., and Gehling, J.G., 2005, Trace fossil preservation and
                               Dzik, J., 2007, The Verdun Syndrome: Simultaneous origin of protective                     the early evolution of animals: Palaeogeography, Palaeoclimatology,
                                      armour and infaunal shelters at the Precambrian–Cambrian transition:                Palaeoecology, v. 220, p. 19–29, doi: 10.1016/j.palaeo.2003.09.035.
                                      Geological Society of London Special Publication 286, p. 405–414, doi:
                                      10.1144/SP286.30.                                                             Keto, L.S., and Jacobson, S.B., 1988, Nd isotopic variations of Phanerozoic
                                                                                                                          palaeoceans: Earth and Planetary Science Letters, v. 90, p. 395–410, doi:
                               Erwin, D.H., 2007, Disparity: Morphological pattern and developmental                      10.1016/0012-821X(88)90138-0.
                                      context: Palaeontology, v. 50, no. 1, p. 57–73, doi:
                                      10.1111/j.1475-4983.2006.00614.x.                                             Knoll, A.H., 2003, Biomineralization and evolutionary history: Reviews in
                                                                                                                          Mineralogy and Geochemistry, v. 54, p. 329–356, doi: 10.2113/0540329.
                               Erwin, D.H., 2015a, Novelty and innovation in the history of life: Current
                                      Biology, v. 25, no. 19, p. R930–R940, doi: 10.1016/j.cub.2015.08.019.         Knoll, A.H., and Bambach, R.K., 2000, Directionality in the history of life:
                                                                                                                          Diffusion from the left wall or repeated scaling of the right? in Erwin,
                               Erwin, D.H., 2015b, Was the Ediacaran–Cambrian radiation a unique                          D.H., and Wing, S.L., eds., Deep Time: Paleobiology’s Perspective:
                                      evolutionary event?: Paleobiology, v. 41, no. 1, p. 1–15, doi: 10.1017/             Lawrence, Kansas, The Paleontological Society and Allen Press, p. 1–14,
                                      pab.2014.2.                                                                         doi: 10.1666/0094-8373(2000)26[1:DITHOL]2.0.CO;2.

                               Erwin, D.H., Laflamme, M., Tweedt, S.M., Sperling, E.A., Pisani, D., and             Kontorovich, A.E., Varlamov, A.I., Grazhdankin, D.V., Karlova, G.A., Klets,
                                      Peterson, K.E., 2011, The Cambrian conundrum: Early divergence and                  A.G., Kontorovich, V.A., Saraev, S.V., Terleev, A.A., Belyaev, S.Y.,
                                      later ecological success in the early history of animals: Science, v. 334,          Varaksina, I.V., Efimov, A.S., Kochnev, B.B., Nagovitsin, K.E., Postnikov,
                                      p. 1091–1097, doi: 10.1126/science.1206375.                                         A.A., and Filippov, Y.F., 2008, A section of Vendian in the east of West
                                                                                                                          Siberian Plate (based on data from the Borehole Vostok 3): Russian
                               Fike, D.A., Grotzinger, J.P., Pratt, L.M., and Summons, R.E., 2006, Oxidation of           Geology and Geophysics, v. 49, p. 932–939.
                                      the Ediacaran ocean: Nature, v. 444, p. 744–747, doi: 10.1038/
                                      nature05345.

                         10
   5   6   7   8   9   10   11   12   13   14   15