Page 11 - i1052-5173-26-11
P. 11
Laflamme, M., Xiao, S., and Kowalewski, M., 2009, Osmotrophy in modular Shen, B., Dong, L., Xiao, S., and Kowalewski, M., 2008, The Avalon explosion: GSA TODAY | www.geosociety.org/gsatoday
Ediacara organisms: Proceedings of the National Academy of Sciences of Evolution of Ediacara morphospace: Science, v. 319, p. 81–84, doi:
the United States of America, v. 106, p. 14,438–14,443, doi: 10.1073/ 10.1126/science.1150279.
pnas.0904836106.
Sperling, E.A., and Vinther, J., 2010, A placozoan affinity for Dickinsonia and
Laflamme, M., Darroch, S.A.F., Tweedt, S.M., Peterson, K.J., and Erwin, D.H., the late Precambrian evolution of metazoan feeding modes: Evolution &
2013, The end of the Ediacara biota: Extinction, biotic replacement, or Development, v. 12, p. 201–209, doi: 10.1111/j.1525-142X.2010.00404.x.
Cheshire Cat?: Gondwana Research, v. 23, p. 558–573, doi: 10.1016/j
.gr.2012.11.004. Sperling, E.A., Laflamme, M., and Peterson, K.J., 2011, Rangeomorphs,
Thectardis (Porifera?) and dissolved organic carbon in the Ediacaran
MacGabhann, B.A., 2014, There is no such thing as the ‘Ediacara Biota’: ocean: Geobiology, v. 9, p. 24–33, doi: 10.1111/j.1472-4669.2010.00259.x.
Geoscience Frontiers, v. 5, no. 1, p. 53–62, doi: 10.1016/j.gsf.2013.08.001.
Sperling, E.A., Frieder, C.A., Raman, A.V., Girguis, P.R., Levin, L.A., and Knoll,
Maloof, A.C., Porter, S.M., Moore, J.L., Dudás, F.Ö., Bowring, S.A., Higgins, A.H., 2013, Oxygen, ecology, and the Cambrian radiation of animals:
J.A., Fike, D.A., and Eddy, M.P., 2010, The earliest Cambrian record of Proceedings of the National Academy of Sciences of the United States of
animals and ocean geochemical change: GSA Bulletin, v. 122, p. 1731– America, v. 110, p. 13,446–13,451, doi: 10.1073/pnas.1312778110.
1774, doi: 10.1130/B30346.1.
Sperling, E.A., Wolock, C.J., Morgan, A.S., Gill, B.C., Kunzmann, M.,
Marshall, C.R., 2006, Explaining the Cambrian “explosion” of animals: Annual Halverson, G.P., Macdonald, F.A., Knoll, A.H., and Johnston, D.T.,
Review of Earth and Planetary Sciences, v. 34, p. 355–384, doi: 10.1146/ 2015, Statistical analysis of iron geochemical data suggests limited late
annurev.earth.33.031504.103001. Proterozoic oxygenation: Nature, v. 523, p. 451–454, doi: 10.1038/
nature14589.
McMenamin, M.A.S., 1985, Basal Cambrian small shelly fossils from the La
Cienega Formation, northwestern Sonora, Mexico: Journal of Tarhan, L.G., Droser, M.L., Planavsky, N.J., and Johnston, D.T., 2015,
Paleontology, v. 59, no. 6, p. 1414–1425. Protracted development of bioturbation through the early Palaeozoic Era:
Nature Geoscience, v. 8, p. 865–869, doi: 10.1038/ngeo2537.
Meyer, M., Xiao, S., Gill, B.C., Schiffbauer, J.D., Chen, Z., Zhou, C., and Yuan,
X., 2014, Interactions between Ediacaran animals and microbial mats: Tweedt, S.M., and Erwin, D.H., 2015, Origin of metazoan developmental
Insights from Lamonte trevalis, a new trace fossil from the Dengying toolkits and their expression in the fossil record: Evolutionary Transitions
Formation of South China: Palaeogeography, Palaeoclimatology, to Multicellular Life: Berlin, Springer, p. 47–77.
Palaeoecology, v. 396, p. 62–74, doi: 10.1016/j.palaeo.2013.12.026.
Van Valen, L., 1973, A new evolutionary law: Evolutionary Theory, v. 1, p. 1–30.
Narbonne, G.M., 2005, The Ediacara biota: Neoproterozoic origin of animals Vermeij, G.J., 1987, Evolution and Escalation: An Ecological History of Life:
and their ecosystems: Annual Review of Earth and Planetary Sciences,
v. 33, p. 421–442, doi: 10.1146/annurev.earth.33.092203.122519. Princeton, New Jersey, Princeton University Press, 527 p.
Wood, R., and Curtis, A., 2015, Extensive metazoan reefs from the Ediacaran
Penny, A., Wood, R., Curtis, A., Bowyer, F., Tostevin, R., and Hoffman, K.-H.,
2014, Ediacaran metazoan reefs from the Nama Group, Namibia: Science, Nama Group, Namibia: The rise of benthic suspension feeding:
v. 344, 6191, p. 1504–1506, doi: 10.1126/science.1253393. Geobiology, v. 13, p. 112–122.
Xiao, S., 2014, Oxygen and early animal evolution, in Farquhar, J., ed., Treatise
Peters, S.E., and Gaines, R.R., 2012, Formation of the ‘Great Unconformity’ as a on Geochemistry, Volume 6: Dordrecht, Elsevier, p. 231–250, doi:
trigger for the Cambrian explosion: Nature, v. 484, 7394, p. 363–366, doi: 10.1016/B978-0-08-095975-7.01310-3.
10.1038/nature10969. Xiao, S., and Laflamme, M., 2009, On the eve of animal radiation: Phylogeny,
ecology and evolution of the Ediacara biota: Trends in Ecology &
Peterson, K.J., Cotton, J.A., Gehling, J.G., and Pisani, D., 2008, The Ediacaran Evolution, v. 24, p. 31–40, doi: 10.1016/j.tree.2008.07.015.
emergence of bilaterians: Congruence between the genetic and the Yochelson, E.L., and Stump, E., 1977, Discovery of early Cambrian fossils at
geological fossil records: Philosophical Transactions of the Royal Society Taylor Nunatak, Antarctica: Journal of Paleontology, v. 51, no. 4, p.
of London. Series B, Biological Sciences, v. 363, p. 1435–1443, doi: 10.1098/ 872–875.
rstb.2007.2233. Yin, Z., Zhu, M., Davidson, E.H., Bottjer, D.J., Zhao, F., and Tafforeau, P., 2015,
Sponge grade body fossil with cellular resolution dating 60 Myr before the
Rahman, I.A., Darroch, S.A.F., Racicot, R.A., and Laflamme, M., 2015, Cambrian: Proceedings of the National Academy of Sciences of the United
Suspension feeding in the enigmatic Ediacaran organism Tribrachidium States of America, v. 112, no. 12, E1453–E1460.
demonstrates complexity of Neoproterozoic ecosystems: Science Yin, Z., Zhu, M., Bottjer, D.J., Zhao, F., and Tafforeau, P., 2016, Meroblastic
Advances, v. 1, e1500800, doi: 10.1126/sciadv.1500800. cleavage identifies some Ediacaran Doushantuo (China) embryo-like
fossils as metazoans: Geology, v. 44, doi: 10.1130/G38262.1.
Rogov, V.I., Karlova, G.A., Marusin, V.V., Kochnev, B.B., Nagovitsin, K.E., and Zhang, X., Shu, D., Han, J., Zhang, Z., Liu, J., and Fu, D., 2014, Triggers for the
Grazhdankin, D.V., 2015, Duration of the first biozone in the Siberian Cambrian explosion: Hypotheses and problems: Gondwana Research,
hypostratotype of the Vendian: Russian Geology and Geophysics, v. 56, v. 25, p. 896–909, doi: 10.1016/j.gr.2013.06.001.
no. 4, p. 573–583. Zhuravlev, A.Y., Liñán, E., Gámez Vintaned, J.A., Debrenne, F., and Fedorov,
A.B., 2012, New finds of skeletal fossils in the terminal Neoproterozoic of
Saltzman, M., and Thomas, E., 2012, Carbon isotope stratigraphy, in Gradstein, the Siberian Platform and Spain: Acta Palaeontologica Polonica, v. 57,
F.M., Ogg, J.G., Schmitz, M., and Ogg, G., eds., The Geologic Time Scale, p. 205–224, doi: 10.4202/app.2010.0074.
volume 1: Amsterdam, Elsevier, p. 207–232, doi: 10.1016/B978-0-444-
59425-9.00011-1. Manuscript received 24 Sept. 2015; accepted 16 May 2016.
Schiffbauer, J.D., Xiao, S., Cai, Y., Wallace, A.F., Hua, H., Hunter, J., Xu, H.,
Peng, Y., and Kaufman, A.J., 2014, A unifying model for Neoproterozoic-
Paleozoic exceptional fossil preservation through pyritization and
carbonaceous compression: Nature Communications, v. 5, 5754, doi:
10.1038/ncomms6754.
Sepkoski, J.J., Jr., 1981, A factor analytic description of the Phanerozoic marine
fossil record: Paleobiology, v. 7, no. 1, p. 36–53, doi: 10.1017/
S0094837300003778.
11