Page 9 - i1052-5173-32-5
P. 9

Cook-Patton, S., and 30 others, 2020, Mapping car-  Galy,  V.V.,  2019,  Mineral  protection  regulates   Lavallee, J., and Cotrufo, F., 2020, Soil carbon is a
          bon accumulation potential from global natural   long-term global preservation of natural organic   valuable resource, but all soil carbon is not created
          forest  regrowth:  Nature,  v.  585,  p.  545–550,   carbon:  Nature,  v.  570,  p.  228–231,  https://doi   equal: The Conversation, https://theconversation
          https://doi.org/10.1038/s41586-020-2686-x.  .org/10.1038/s41586-019-1280-6.  .com/soil-carbon-is-a-valuable-resource-but-all
         Couwenberg,  J.,  Thiele,  A.,  Tanneberger,  F.,   Hicks Pries, C.E., Castanha, C., Porras, R.C., and   -soil-carbon-is-not-created-equal-129175 (accessed
          Augustin, J., Bärisch, S., Dubovik, D., Liashchyn-  Torn, M.S., 2017, The whole-soil carbon flux in   7 Feb. 2022).
          skaya, N., Michaelis, D., Minke, M., Skuratovich,   response to warming: Science, v. 355, p. 1420–  Lefèvre, R., Barré, P., Moyano, F., Christensen, B.,
          A., and Joosten, H., 2011, Assessing greenhouse   1423, https://doi.org/10.1126/science.aal1319.  Bardoux, G., Eglin, T., Girardin, C., Houot, S.,
          gas emissions from peatlands using vegetation as   Holden, J., Chapman, P.J., and Labadz, J.C., 2004,   Kätterer, T., van Oort, F., and Chenu, C., 2014,
          a proxy: Hydrobiologia, v. 674, p. 67–89, https://  Artificial drainage of peatlands: Hydrological and   Higher temperature sensitivity for stable than for
          doi.org/10.1007/s10750-011-0729-x.  hydrochemical process and wetland restoration:   labile soil organic carbon—Evidence from incu-
         Davidson, E.A., and Janssens, I.A., 2006, Tempera-  Progress in Physical Geography, v. 28, p. 95–123,   bations of  long-term  bare  fallow soils:  Global
          ture sensitivity of soil carbon decomposition and   https://doi.org/10.1191/0309133304pp403ra.  Change Biology, v. 20, p. 633–640, https://doi
          feedbacks  to  climate  change:  Nature,  v.  440,    Hugelius, G., and 16 others, 2014, Estimated stocks   .org/10.1111/gcb.12402.
          p. 165–173, https://doi.org/10.1038/nature04514.  of circumpolar permafrost carbon with quanti-  Lehmeier,  C.A.,  Min,  K.,  Niehues,  N.D.,  Ballan-
         Dessaux, Y., Grandclément, C., and Faure, D., 2016,   fied uncertainty ranges and identified data gaps:   tyne, I.V.F., and Billings, S.A., 2013, Tempera-
          Engineering the rhizosphere: Trends in Plant   Biogeosciences, v. 11, p. 6573–6593, https://doi   ture-mediated changes of exoenzyme-substrate
          Science, v. 21, p. 266–278, https://doi.org/ 10.1016/   .org/10.5194/bg-11-6573-2014.  reaction rates and their consequences for the car-
          j.tplants.2016.01.002.             Humpenöder, F., Karstens, K., Lotze-Campen, H.,   bon to nitrogen flow ratio of liberated resources:
         Dijkstra,  F.,  Zhu,  B.,  and  Cheng,  W.,  2021,  Root   Leifeld, J., Menichetti, L., Barthelmes, A., and   Soil Biology & Biochemistry, v. 57, p. 374–382,
          effects on soil organic carbon: A double-edged   Popp, A., 2020, Peatland protection and restora-  https://doi.org/10.1016/j.soilbio.2012.10.030.
          sword: The New Phytologist, v. 230, p. 60–65,   tion are key for climate change mitigation: Envi-  Lehmkuhl, F., Zens, J., Krauß, L., Schulte, P., and
          https://doi.org/10.1111/nph.17082.  ronmental  Research  Letters,  v.  15,  p.  104093,   Kels,  H.,  2016,  Loess-paleosol  sequences  at  the
         Drake, T.W., Van Oost, K., Barthel, M., Bauters, M.,   https://doi.org/10.1088/1748-9326/abae2a.  northern European loess belt in Germany: Distri-
          Hoyt, A.M., Podgorski, D.C., Six, J., Boeckx, P.,   IPCC, 2013, Climate Change 2013: The Physical Sci-  bution, geomorphology and stratigraphy: Quater-
          Trumbore, S.E., Cizungu Ntaboba, L., and Spen-  ence Basis, in Stocker, T.F., Qin, D., Plattner, G.-K.,   nary Science Reviews, v. 153, p. 11–30, https://doi
          cer, R.G.M., 2019, Mobilization of aged and biola-  Tignor, M., Allen, S.K., Boschung, J., Nauels, A.,   .org/10.1016/j.quascirev.2016.10.008.
          bile soil carbon by tropical deforestation: Nature   Xia, Y., Bex, V., and Midgley, P.M., eds., Contri-  Li, D., Niu, S., and Luo, Y., 2012, Global patterns of
          Geoscience,  v.  12,  p.  541–546,  https://doi.org/   bution of Working Group I to the Fifth Assess-  the dynamics of soil carbon and nitrogen stocks
          10.1038/s41561-019-0384-9.          ment  Report  of  the  Intergovernmental  Panel  on   following afforestation: A meta-analysis: The
         Farooqi, Z., Sabir, M., Zeeshan, N., Naveed, K., and   Climate  Change:  Cambridge  University  Press,   New Phytologist, v. 195, p. 172–181, https://doi
          Hussain, M., 2018, Enhancing carbon sequestra-  Cambridge, UK, and New York, 1535 p.  .org/10.1111/j.1469-8137.2012.04150.x.
          tion using organic amendments and agricultural   Janzen, H.H., 2006, The soil carbon dilemma: Shall   Lloyd, J., and Taylor, J.A., 1994, On the temperature
          practices,  in Agarwal, R.K., ed., Carbon Cap-  we hoard it or use it?: Soil Biology & Biochemis-  dependence of soil respiration: Functional Ecolo-
          ture,  Utilization,  and  Sequestration:  London,   try,  v.  38,  p.  419–424,  https://doi.org/10.1016/   gy, v. 8, p. 315–323, https://doi.org/10.2307/2389824.
          IntechOpen  Limited,  https://doi.org/10.5772/   j.soilbio.2005.10.008.  Loisel, J., Connors, J., Hugelius, G., Harden, J.W.,
          intechopen.79336.                  Kaiser, M., Kleber, M., and Asefaw, A., 2015, How   and Morgan, C.L., 2019, Soils can help mitigate
         Follett, R.F., 2001, Soil management concepts and   air-drying and rewetting modify soil organic   CO  emissions, despite the challenges: Proceed-
                                                                                     2
          carbon sequestration in cropland soils: Soil &   matter characteristics: An assessment to im-  ings of the National Academy of Sciences of the
          Tillage Research, v. 61, p. 77–92, https://doi .org/   prove data interpretation and inference: Soil Bi-  United States of America, v. 116, p. 10,211–10,212,
          10.1016/S0167-1987(01)00180-5.      ology & Biochemistry, v. 80, p. 324–340, https://  https://doi.org/10.1073/pnas.1900444116.
         Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary,   doi.org/10.1016/j.soilbio.2014.10.018.  Marin-Spiotta, E., Chaopricha, N.T., Plante, A.F.,
          B., and Rumpel, C., 2007, Stability of organic car-  Karhu, K., and 11 others, 2019, Similar temperature   Diefendorf, A.F., Mueller, C.W., Grandy, A.S.,
          bon in deep soil layers controlled by fresh carbon   sensitivity of soil mineral-associated organic   and Mason, J.A., 2014, Long-term stabilization of
          supply: Nature, v. 450, p. 277–280, https://doi .org/   carbon regardless of age: Soil Biology & Bio-  deep soil carbon by fire and burial during early
          10.1038/nature06275.                chemistry, v. 136, 107527, https://doi.org/10.1016/   Holocene  climate  change:  Nature  Geoscience,
         Freeman,  C.,  Ostle,  N.,  Kang,  H.,  Lee,  D.S.,  and   j.soilbio.2019.107527.  v. 7, p. 428–432, https://doi.org/10.1038/ngeo2169.
          Lee, J.S., 2001, An enzymic ‘latch’ on a global   Keiluweit, M., Bougoure, J., Nico, P., Pett-Ridge, J.,   McGuire, A.D., Anderson, L.G., Christensen, T.R.,
          carbon store: Nature, v. 409, p. 149–150, https://  Weber, P., and Kleber, M., 2015, Mineral protec-  Scott, D., Laodong, G., Hayes, D.J., Martin, H.,
          doi.org/10.1038/35051650.           tion of soil carbon counteracted by root exu-  Lorenson, T.D., Macdonald, R.W., and Nigel, R.,
         Friedlingstein, P., and 85 others, 2020, Global Car-  dates: Nature Climate Change, v. 5, p. 588–595,   2009, Sensitivity of the carbon cycle in the Arctic
          bon  Budget  2020:  Earth  System  Science  Data,   https://doi.org/10.1038/nclimate2580.  to climate change: Ecological Monographs, v. 79,
          v.  12,  p.  3269–3340,  https://doi.org/10.5194/   Kell, D., 2011, Breeding crop plants with deep roots:   p. 523–555, https://doi.org/10.1890/08-2025.1.
          essd-12-3269-2020.                  Their role in sustainable carbon, nutrient and wa-  Min, K., Bagchi, S., Buckeridge, K., Billings, S.A.,
         Gonzalez-Sanchez, E.J., Veroz-Gonzalez, O., Blanco-   ter sequestration: Annals of Botany, v.  108,   Ziegler, S.E., and Edwards, K.A., 2019, Tempera-
          Roldan, G.L., Marquez-Garcia, F., and Carbonell-  p. 407–418, https://doi.org/10.1093/aob/mcr175.  ture sensitivity of biomass-specific microbial exo-
          Bojollo, R., 2015, A renewed view of conservation   Koide, R.T., Nguyen, B.T., Skinner, R.H., Dell, C.J.,   enzyme  activities  and  CO  efflux is resistant to
                                                                                                    2
          agriculture and its evolution over the last decade in   Peoples,  M.S.,  Adler,  P.R.,  and  Drohan,  P.J.,   change across short- and long-term timescales:
          Spain: Soil & Tillage Research, v. 146, p. 204–212,   2015, Biochar amendment of soil improves resil-  Global  Change  Biology,  v.  25,  p.  1793–1807,
          https://doi.org/10.1016/j.still.2014.10.016.  ience to climate change: Global Change Biology.   https://doi.org/10.1111/gcb.14605.
         Griscom, B.W., and 31 others, 2017, Natural climate   Bioenergy, v. 7, p. 1084–1091, https://doi.org/   Min, K., Berhe, A.A., Khoi, C.M., van Asperen, H.,
          solutions: Proceedings of the National Academy   10.1111/gcbb.12191.    Gillabel, J., and Six, J., 2020, Differential effects
          of  Sciences  of  the  United  States  of  America,   Kopittke, P., et al., 2022, Ensuring planetary surviv-  of wetting and drying on soil CO  concentration
                                                                                                        2
          v. 114, p. 11,645–11,650, https://doi.org/10.1073/  al: The centrality of organic carbon in balancing   and flux in near-surface vs. deep soil layers: Bio-
          pnas.1710465114.                    the  multifunctional  nature  of  soils:  Critical  Re-  geochemistry, v. 148, p. 255–269, https://doi.org/
         Guo,  L.B.,  and  Gifford,  R.M.,  2002,  Soil  carbon   views in Environmental Science and Technology,   10.1007/s10533-020-00658-7.
          stocks and land use change: A meta-analysis:   https://doi.org/10.1080/10643389.2021.2024484.  Montgomery, D., 2007, Soil erosion and agricultural
          Global Change Biology, v. 8, p. 345–360, https://  Lal, R., 2004, Soil carbon sequestration impacts on   sustainability: Proceedings of the National Acad-
          doi.org/10.1046/j.1354-1013.2002.00486.x.  global climate change and food security: Science,   emy of Sciences of the United States of America,
         Hemingway,  J.D.,  Rothman,  D.H.,  Grant,  K.E.,   v.  304,  p.  1623–1627,  https://doi.org/ 10.1126/   v. 104, p. 13,268–13,272, https://doi.org/ 10.1073/
          Rosengard, S.Z., Eglinton, T.I., Derry, L.A., and   science.1097396.    pnas.0611508104.

                                                                                          www.geosociety.org/gsatoday  9
   4   5   6   7   8   9   10   11   12   13   14